[2] Chartrand, G., Kappor, S. F., Lesniak, L., Lick, D. R.: Generalized connectivity in graphs. Bull. Bombay Math. Colloq. 2 (1984), 1-6.
[4] Imrich, W., Klavžar, S.:
Product Graphs. Structure and Recognition. Wiley-Interscience Series in Discrete Mathematics and Optimization Wiley, New York (2000).
MR 1788124 |
Zbl 0963.05002
[5] Imrich, W., Klavžar, S., Rall, D. F.:
Topics in Graph Theory. Graphs and Their Cartesian Product. A K Peters Wellesley (2008).
MR 2468851 |
Zbl 1156.05001
[7] Li, H., Li, X., Sun, Y.:
The generalized 3-connectivity of Cartesian product graphs. Discrete Math. Theor. Comput. Sci. (electronic only) 14 (2012), 43-54.
MR 2900353
[8] Li, X., Mao, Y.: A survey on the generalized connectivity of graphs. ArXiv:1207.1838v2 [math.CO].
[9] Li, X., Mao, Y., Sun, Y.:
On the generalized (edge-)connectivity of graphs. Australas. J. Comb. (electronic only) 58 (2014), 304-319.
MR 3211785 |
Zbl 1296.05107
[10] Li, X., Mao, Y., Wang, L.: Graphs with large generalized 3-edge-connectivity. ArXiv:1201. 3699v1 [math.CO].
[11] Liouville, B.:
Sur la connectivité des produits de graphes. C. R. Acad. Sci., Paris, Sér. A 286 (1978), 363-365 French.
MR 0480202 |
Zbl 0368.05037
[13] Sherwani, N. A.:
Algorithms for VLSI Physical Design Automation. Kluwer Academic Publishers Boston (1999).
Zbl 0926.68059