[4] Bernstein, S.: Sur la convergence absolue des séries trigonométriques. C. R. Acad. Sci., Paris 158 French (1914), 1661-1663.
[5] Bogovskiĭ, M. E.:
Decomposition of {$L_p(\Omega;{\mathbb R}^n)$} into a direct sum of subspaces of solenoidal and potential vector fields. Sov. Math., Dokl. 33 (1986), 161-165 translated from Russian original in Dokl. Akad. Nauk SSSR 286 (1986), 781-786.
MR 0828621
[7] Bu, S., Kim, J.-M.:
Operator-valued Fourier multiplier theorems on {$L_p$}-spaces on {$\mathbb T^d$}. Arch. Math. 82 (2004), 404-414.
MR 2061447
[8] Denk, R., Hieber, M., Prüss, J.:
{$\mathcal R$}-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Am. Math. Soc. 788 (2003), 114.
MR 2006641
[9] Farwig, R.:
Weighted {$L^q$}-{H}elmholtz decompositions in infinite cylinders and in infinite layers. Adv. Differ. Equ. 8 (2003), 357-384.
MR 1948530 |
Zbl 1038.35068
[14] Galdi, G. P.:
An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I: Linearized Steady Problems. Springer Tracts in Natural Philosophy 38 Springer, New York (1994).
MR 1284205 |
Zbl 0949.35004
[15] Kunstmann, P. C., Weis, L.:
Maximal {$L_p$}-regularity for parabolic equations, Fourier multiplier theorems and {$H^\infty$}-functional calculus. Functional Analytic Methods for Evolution Equations Lecture Notes in Math. 1855 Springer, Berlin (2004), 65-311.
MR 2108959 |
Zbl 1097.47041
[16] Nau, T.:
$ L^ P$-Theory of Cylindrical Boundary Value Problems. Springer Spektrum Wiesbaden (2012).
MR 2987207 |
Zbl 1252.35003
[17] Ruzhansky, M., Turunen, V.:
Pseudo-Differential Operators and Symmetries. Pseudo-Differential Operators. Theory and Applications 2: Background Analysis and Advanced Topics Birkhäuser, Basel (2010).
MR 2567604 |
Zbl 1193.35261