Previous |  Up |  Next

Article

Keywords:
Helmholtz projection; Helmholtz decomposition; weak Neumann problem; periodic boundary conditions; finite cylinder; cylindrical space domain; $L^p$-space; operator-valued Fourier multiplier; $\mathcal R$-boundedness; reflection technique; fluid dynamics
Summary:
In this article we prove for $1<p<\infty $ the existence of the $L^p$-Helmholtz projection in finite cylinders $\Omega $. More precisely, $\Omega $ is considered to be given as the Cartesian product of a cube and a bounded domain $V$ having $C^1$-boundary. Adapting an approach of Farwig (2003), operator-valued Fourier series are used to solve a related partial periodic weak Neumann problem. By reflection techniques the weak Neumann problem in $\Omega $ is solved, which implies existence and a representation of the $L^p$-Helmholtz projection as a Fourier multiplier operator.
References:
[1] Abels, H.: Reduced and generalized Stokes resolvent equations in asymptotically flat layers. I. Unique solvability. J. Math. Fluid Mech. 7 (2005), 201-222. DOI 10.1007/s00021-004-0116-8 | MR 2177127 | Zbl 1070.35020
[2] Abels, H.: Reduced and generalized Stokes resolvent equations in asymptotically flat layers. {II}. {$H_\infty$}-calculus. J. Math. Fluid Mech. 7 (2005), 223-260. DOI 10.1007/s00021-004-0117-7 | MR 2177128 | Zbl 1083.35085
[3] Arendt, W., Bu, S.: The operator-valued Marcinkiewicz multiplier theorem and maximal regularity. Math. Z. 240 (2002), 311-343. DOI 10.1007/s002090100384 | MR 1900314 | Zbl 1018.47008
[4] Bernstein, S.: Sur la convergence absolue des séries trigonométriques. C. R. Acad. Sci., Paris 158 French (1914), 1661-1663.
[5] Bogovskiĭ, M. E.: Decomposition of {$L_p(\Omega;{\mathbb R}^n)$} into a direct sum of subspaces of solenoidal and potential vector fields. Sov. Math., Dokl. 33 (1986), 161-165 translated from Russian original in Dokl. Akad. Nauk SSSR 286 (1986), 781-786. MR 0828621
[6] Bu, S.: On operator-valued Fourier multipliers. Sci. China, Ser. A 49 (2006), 574-576. DOI 10.1007/s11425-006-0574-y | MR 2250485 | Zbl 1160.42305
[7] Bu, S., Kim, J.-M.: Operator-valued Fourier multiplier theorems on {$L_p$}-spaces on {$\mathbb T^d$}. Arch. Math. 82 (2004), 404-414. MR 2061447
[8] Denk, R., Hieber, M., Prüss, J.: {$\mathcal R$}-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Am. Math. Soc. 788 (2003), 114. MR 2006641
[9] Farwig, R.: Weighted {$L^q$}-{H}elmholtz decompositions in infinite cylinders and in infinite layers. Adv. Differ. Equ. 8 (2003), 357-384. MR 1948530 | Zbl 1038.35068
[10] Farwig, R., Kozono, H., Sohr, H.: On the Helmholtz decomposition in general unbounded domains. Arch. Math. 88 (2007), 239-248. DOI 10.1007/s00013-006-1910-8 | MR 2305602 | Zbl 1121.35097
[11] Farwig, R., Myong-Hwan, R.: Resolvent estimates and maximal regularity in weighted {$L^q$}-spaces of the Stokes operator in an infinite cylinder. J. Math. Fluid Mech. 10 (2008), 352-387. DOI 10.1007/s00021-006-0235-5 | MR 2430805 | Zbl 1162.76322
[12] Farwig, R., Ri, M.-H.: An {$L^q(L^2)$}-theory of the generalized Stokes resolvent system in infinite cylinders. Stud. Math. 178 (2007), 197-216. DOI 10.4064/sm178-3-1 | MR 2289354 | Zbl 1111.35034
[13] Farwig, R., Ri, M.-H.: Stokes resolvent systems in an infinite cylinder. Math. Nachr. 280 (2007), 1061-1082. DOI 10.1002/mana.200510536 | MR 2334660 | Zbl 1131.35055
[14] Galdi, G. P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I: Linearized Steady Problems. Springer Tracts in Natural Philosophy 38 Springer, New York (1994). MR 1284205 | Zbl 0949.35004
[15] Kunstmann, P. C., Weis, L.: Maximal {$L_p$}-regularity for parabolic equations, Fourier multiplier theorems and {$H^\infty$}-functional calculus. Functional Analytic Methods for Evolution Equations Lecture Notes in Math. 1855 Springer, Berlin (2004), 65-311. MR 2108959 | Zbl 1097.47041
[16] Nau, T.: $ L^ P$-Theory of Cylindrical Boundary Value Problems. Springer Spektrum Wiesbaden (2012). MR 2987207 | Zbl 1252.35003
[17] Ruzhansky, M., Turunen, V.: Pseudo-Differential Operators and Symmetries. Pseudo-Differential Operators. Theory and Applications 2: Background Analysis and Advanced Topics Birkhäuser, Basel (2010). MR 2567604 | Zbl 1193.35261
[18] Štrkalj, Ž., Weis, L.: On operator-valued Fourier multiplier theorems. Trans. Am. Math. Soc. 359 (2007), 3529-3547. DOI 10.1090/S0002-9947-07-04417-0 | MR 2302504 | Zbl 1209.42005
Partner of
EuDML logo