Previous |  Up |  Next

Article

Keywords:
Pettis integral; McShane integral; MC-filling family; uniform Eberlein compact space; scalarly negligible function; Lebesgue injection; Hilbert generated space; strong Markuševič basis; adequate inflation
Summary:
R. Deville and J. Rodríguez proved that, for every Hilbert generated space $X$, every Pettis integrable function $f\colon [0,1]\rightarrow X$ is McShane integrable. R. Avilés, G. Plebanek, and J. Rodríguez constructed a weakly compactly generated Banach space $X$ and a scalarly null (hence Pettis integrable) function from $[0,1]$ into $X$, which was not McShane integrable. We study here the mechanism behind the McShane integrability of scalarly negligible functions from $[0,1]$ (mostly) into $C(K)$ spaces. We focus in more detail on the behavior of several concrete Eberlein (Corson) compact spaces $K$, that are not uniform Eberlein, with respect to the integrability of some natural scalarly negligible functions from $[0,1]$ into $C(K)$ in McShane sense.
References:
[1] Argyros, S. A., Arvanitakis, A. D., Mercourakis, S. K.: Talagrand's $K_{\sigma\delta}$ problem. Topology Appl. 155 (2008), 1737-1755. DOI 10.1016/j.topol.2008.05.014 | MR 2437025 | Zbl 1158.46011
[2] Argyros, S., Farmaki, V.: On the structure of weakly compact subsets of Hilbert spaces and applications to the geometry of Banach spaces. Trans. Am. Math. Soc. 289 (1985), 409-427. DOI 10.1090/S0002-9947-1985-0779073-9 | MR 0779073 | Zbl 0585.46010
[3] Argyros, S., Mercourakis, S., Negrepontis, S.: Functional-analytic properties of Corson-compact spaces. Stud. Math. 89 (1988), 197-229. DOI 10.4064/sm-89-3-197-229 | MR 0956239 | Zbl 0656.46014
[4] Avilés, A., Plebanek, G., Rodríguez, J.: The McShane integral in weakly compactly generated spaces. J. Funct. Anal. 259 (2010), 2776-2792. DOI 10.1016/j.jfa.2010.08.007 | MR 2719274 | Zbl 1213.46037
[5] Benyamini, Y., Starbird, T.: Embedding weakly compact sets into Hilbert space. Isr. J. Math. 23 (1976), 137-141. DOI 10.1007/BF02756793 | MR 0397372 | Zbl 0325.46023
[6] Číek, P., Fabian, M.: Adequate compacta which are Gul'ko or Talagrand. Serdica Math. J. 29 (2003), 55-64. MR 1981105
[7] Piazza, L. Di, Preiss, D.: When do McShane and Pettis integrals coincide? Ill. J. Math. 47 (2003), 1177-1187. DOI 10.1215/ijm/1258138098 | MR 2036997
[8] Deville, R., Rodríguez, J.: Integration in Hilbert generated Banach spaces. Isr. J. Math. 177 (2010), 285-306. DOI 10.1007/s11856-010-0047-4 | MR 2684422
[9] Fabian, M. J.: Gâteaux Differentiability of Convex Functions and Topology. Weak Asplund Spaces. Canadian Mathematical Society Series of Monographs and Advanced Texts Wiley, New York (1997). MR 1461271 | Zbl 0883.46011
[10] Fabian, M., Godefroy, G., Montesinos, V., Zizler, V.: Inner characterizations of weakly compactly generated Banach spaces and their relatives. J. Math. Anal. Appl. 297 (2004), 419-455. DOI 10.1016/j.jmaa.2004.02.015 | MR 2088670 | Zbl 1063.46013
[11] Fabian, M., Habala, P., Hájek, P., Montesinos, V., Zizler, V.: Banach Space Theory. The Basis for Linear and Nonlinear Analysis. CMS Books in Mathematics Springer, Berlin (2011). MR 2766381 | Zbl 1229.46001
[12] Farmaki, V.: The structure of Eberlein, uniformly Eberlein and Talagrand compact spaces in $\Sigma(R^\Gamma)$. Fundam. Math. 128 (1987), 15-28. DOI 10.4064/fm-128-1-15-28 | MR 0919286
[13] Fremlin, D. H.: Measure Theory Vol. 4. Topological Measure Spaces Part I, II. Corrected second printing of the 2003 original. Torres Fremlin Colchester (2006). MR 2462372 | Zbl 1166.28001
[14] Fremlin, D. H.: The generalized McShane integral. Ill. J. Math. 39 (1995), 39-67. DOI 10.1215/ijm/1255986628 | MR 1299648 | Zbl 0810.28006
[15] Hájek, P., Montesinos, V., Vanderwerff, J., Zizler, V.: Biorthogonal Systems in Banach Spaces. CMS Books in Mathematics Springer, New York (2008). MR 2359536 | Zbl 1136.46001
[16] Leiderman, A. G., Sokolov, G. A.: Adequate families of sets and Corson compacts. Commentat. Math. Univ. Carol. 25 (1984), 233-246. MR 0768810 | Zbl 0586.54022
[17] Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces I. Sequence Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete 92 Springer, Berlin (1977). MR 0500056 | Zbl 0362.46013
[18] Lukeš, J., Malý, J.: Measure and Integral. Matfyzpress Praha (1995). Zbl 0888.28001
[19] Marciszewski, W.: On sequential convergence in weakly compact subsets of Banach spaces. Stud. Math. 112 (1995), 189-194. DOI 10.4064/sm-112-2-189-194 | MR 1311695 | Zbl 0822.46004
[20] Martin, D. A., Solovay, R. M.: Internal Cohen extensions. Ann. Math. Logic 2 (1970), 143-178. DOI 10.1016/0003-4843(70)90009-4 | MR 0270904 | Zbl 0222.02075
[21] Schwabik, Š., Ye, G.: Topics in Banach Space Integration. Series in Real Analysis 10 World Scientific, Hackensack (2005). MR 2167754 | Zbl 1088.28008
[22] Talagrand, M.: Espaces de Banachs faiblement $\mathcal K$-analytiques. Ann. Math. 110 (1979), 407-438 French. DOI 10.2307/1971232 | MR 0554378
Partner of
EuDML logo