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GENERALIZED 3-EDGE-CONNECTIVITY OF

CARTESIAN PRODUCT GRAPHS

Yuefang Sun, Shaoxing
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Abstract. The generalized k-connectivity κk(G) of a graph G was introduced by Char-
trand et al. in 1984. As a natural counterpart of this concept, Li et al. in 2011 introduced
the concept of generalized k-edge-connectivity which is defined as λk(G) = min{λ(S) : S ⊆
V (G) and |S| = k}, where λ(S) denotes the maximum number l of pairwise edge-disjoint
trees T1, T2, . . . , Tl in G such that S ⊆ V (Ti) for 1 6 i 6 l. In this paper we prove that
for any two connected graphs G and H we have λ3(G � H) > λ3(G) + λ3(H), where
G � H is the Cartesian product of G and H . Moreover, the bound is sharp. We also obtain
the precise values for the generalized 3-edge-connectivity of the Cartesian product of some
special graph classes.
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1. Introduction

All graphs in this paper are undirected, finite and simple. We follow the notation

and terminology of [1] for those not defined in this paper. Connectivity is one of the

most important concepts in graph theory and its applications, both in a combinatorial

sense and an algorithmic sense. In theoretical computer science, connectivity is

a basic measure of reliability of networks. By the well-known Menger’s theorem, the

(vertex) connectivity of a graph G = (V (G), E(G)), denoted κ(G), can be defined

as the minimum κ({u, v}) over all 2-subsets {u, v} of V (G), where κ({u, v}) denotes

the maximum number of internally disjoint u−v paths in G. In [2], Chartrand et al.

introduced the following generalized connectivity. Let G be a graph of order n > 2

We acknowledge the support from National Natural Foundation of China through Project
NSFC No. 11401389.
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and let k be an integer with 2 6 k 6 n. For a set S of k vertices of G, let κ(S)

denote the maximum number l of edge-disjoint trees T1, T2, . . . , Tl in G such that

V (Ti) ∩ V (Tj) = S for 1 6 i < j 6 l. (Note that these trees are vertex-disjoint

in G \S.) A collection {T1, T2, . . . , Tl} of trees in G with this property is called a set

of internally disjoint trees connecting S. The generalized k-connectivity of G is then

defined as

κk(G) = min{κ(S) ; S ⊆ V (G) and |S| = k}.

Thus κ2(G) = κ(G) and κk(G) = 0 when G is disconnected. As a natural counterpart

of the generalized connectivity, recently Li et al. [9] introduced the following concept

of generalized edge-connectivity. Let λ(S) denote the maximum number l of pairwise

edge-disjoint trees T1, T2, . . . , Tl in G such that S ⊆ V (Ti) for 1 6 i 6 l. The

generalized k-edge-connectivity of G is defined as

λk(G) = min{λ(S) ; S ⊆ V (G) and |S| = k}.

Thus λ2(G) = λ(G) is the usual edge-connectivity, and λk(G) = 0 when G is discon-

nected. Clearly, we have κk(G) 6 λk(G).

The generalized connectivity and edge-connectivity are also called the tree connec-

tivities. In addition to being a natural combinatorial measure, the tree connectivity

can be motivated by its interesting interpretation in practice. For example, suppose

that G represents a network. If one wants to connect a set S of nodes of G with

|S| > 3, then a tree has to be used to connect them. This kind of tree with minimum

order for connecting a set of nodes is usually called a Steiner tree, and popularly

used in the physical design of VLSI [13]. Usually, one wants to consider how reliable

(or tough) a network can be for the connection of a set of vertices. Then the number

of totally independent ways to connect them is a measure for this purpose. The tree

connectivities can serve for measuring the capability of a network G to connect any

k vertices in G. The reader is referred to a recent survey [8] on the state-of-the-art

of research on tree connectivities.

Products of graphs occur naturally in discrete mathematics as tools in combinato-

rial constructions, they give rise to important classes of graphs and deep structural

problems. The Cartesian product is one of the most important graph products and

plays a key role in design and analysis of networks. Many researchers have inves-

tigated the (edge) connectivity of the Cartesian product graphs in the past several

decades [3], [4], [6], [12], [14], [5], [15]. Specially, the exact formula for κ(G � H)

was obtained.
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Theorem 1.1 ([11], [14]). Let G and H be graphs on at least two vertices. Then

κ(G � H) = min{κ(G)|H |, κ(H)|G|, δ(G) + δ(H)}.

This theorem was first stated by Liouville [11]. However, his proof never appeared.

In the meantime, several partial results were obtained until Špacapan [14] provided

the proof. Theorem 1.1 in particular implies the following result of Sabidussi [12]:

Theorem 1.2 ([12]). Let G and H be connected graphs. Then κ(G � H) >

κ(G) + κ(H).

Li, Li and Sun [7] investigated the generalized 3-connectivity of the Cartesian

product graphs and get the following result which could be seen as an extension of

Theorem 1.2.

Theorem 1.3 ([7]). Let G and H be connected graphs such that κ3(G) > κ3(H).

Then we have:

(i) If κ3(G) < κ(G), then κ3(G � H) > κ3(G) + κ3(H). Moreover, the bound is

sharp.

(ii) If κ3(G) = κ(G), then κ3(G � H) > κ3(G) + κ3(H)− 1. Moreover, the bound

is sharp.

In this paper, we continue the research on the generalized connectivity of the

Cartesian product graphs and get the following result for the generalized 3-edge-

connectivity of Cartesian product.

Theorem 1.4. Let G and H be two connected graphs. Then we have λ3(G �

H) > λ3(G) + λ3(H). Moreover, the bound is sharp.

The proof of Theorem 1.4 consists of Lemmas 3.1, 3.2 and 3.3. In order to prove

these lemmas we need a few preliminary results that will be given in the next section.

In Section 4, we also obtain the precise values for the generalized 3-edge-connectivity

of the Cartesian product of some special graph classes (Propositions 4.1 and 4.2).

2. Preliminaries

The Cartesian product of two graphs G and H , denoted G � H , is defined to have

the vertex set V (G) × V (H) such that (u, u′) and (v, v′) are adjacent if and only if

either u = v and u′v′ ∈ E(H), or u′ = v′ and uv ∈ E(G). Note that this product is

commutative, that is, G � H = H � G.

We use the following useful notion which was introduced in [4], [5]. The mappings

pG : (u, v) 7→ u and pH : (u, v) 7→ v from V (G � H) into V (G) and V (H) are weak
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homomorphisms from G � H onto the factors G and H , respectively. They are

called projections in the literature.

Let G and H be two graphs with V (G) = {ui ; 1 6 i 6 n} and V (H) = {vj ; 1 6

j 6 m}. We use G(vj) to denote the subgraph of G � H induced by the vertex set

{(ui, vj) ; 1 6 i 6 n} where 1 6 j 6 m, and use H(ui) to denote the subgraph of

G � H induced by the vertex set {(ui, vj) ; 1 6 j 6 m} where 1 6 i 6 n. Clearly, we

have G(vj) ∼= G and H(ui) ∼= H . For example, as shown in Figure 1, G(vj) ∼= G for

1 6 j 6 4 and H(ui) ∼= H for 1 6 i 6 3. For 1 6 j1 6= j2 6 m, the vertices (ui, vj1)

and (ui, vj2 ) belong to the same graph H(ui) where ui ∈ V (G), we call (ui, vj2) the

vertex corresponding to (ui, vj1) in G(vj2); for 1 6 i1 6= i2 6 n, we call (ui2 , vj) the

vertex corresponding to (ui1 , vj) in H(ui2) [7]. Similarly, we can define the path and

the tree corresponding to some path and tree, respectively. For example, in graph (c)

of Figure 1, let P1 and P2 be the paths whose edges are labelled 1 and 2 in H(u1)

and H(u2), respectively. Then P2 is called the path corresponding to P1 in H(u2).

Clearly, P1 and P2 correspond to the path v1, v2, v3, v4 in graph H .

u1

u2

u3

G

(a)

v1

v2

v3

v4

H

(b)

H(u1)

H(u2)

H(u3)

G(v1) G(v2) G(v3) G(v4)

(c)

1

2

1

2

1

2

Figure 1. Graphs G, H and their Cartesian product.

Lemma 2.1 ([10]). Let G be a connected graph of order n. If there exist two

adjacent vertices of degree δ(G), then λk(G) 6 δ(G) − 1 for every integer k with

3 6 k 6 n, and, moreover, the bound is sharp.

Theorem 2.2 ([9]). For every two integers n and k with 2 6 k 6 n, λk(Kn) =

n− ⌈k/2⌉.

Note that in the sequel we assume that every tree T which connects S is minimal,

that is, the subgraph which is obtained by deleting any set of vertices or edges of T

will not connect S. This assumption will not affect our results.
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3. Proof of Theorem 1.4

For a set S, we use |S| to denote its size. Let λ3(G) = k, λ3(H) = l. Without

loss of generality, we assume that k > l. For any set S = {x, y, z} of three vertices

in V (G � H) where x ∈ V (G(vi)), y ∈ V (G(vj)), z ∈ V (G(vk)), we need to find at

least k + l edge-disjoint trees connecting S.

Lemma 3.1. In the case that i, j, k are distinct, we can construct at least k + l

edge-disjoint trees connecting S.

P r o o f. Without loss of generality, we assume that x ∈ V (G(v1)) ∩ V (H(u1)),

y ∈ V (G(v2)), z ∈ V (G(v3)). Furthermore, let y′, z′ be the vertices corresponding

to y, z in G(v1), x′, z′′ be the vertices corresponding to x, z in G(v2) and x′′, y′′ be

the vertices corresponding to x, y in G(v3).

Case 1. |{pG(x), pG(y), pG(z)}| = 1. Now we know that x, y′, z′ are the same

vertex in G(v1). Let x1 be a neighbor of x in G(v1). Without loss of generality,

we assume that x1 ∈ H(u2). Let x′

1 and x′′

1 be the corresponding vertices of x1 in

G(v2) and G(v3), respectively. Clearly, yx′

1 ∈ E(G(v2)), zx′′

1 ∈ E(G(v3)). Let T1 be

the tree obtained from T ′

1 and edges xx1, yx′

1, zx
′′

1 , where T
′

1 is a tree connecting

{x1, x
′

1, x
′′

1} in H(u2) (see Figure 2). Since x has at least k neighbors in G(v1), we

can find k such trees. Thus, we get at least k + l trees connecting S since there are

l edge-disjoint trees connecting S in H(u1). It is easy to show that any two of these

trees are edge-disjoint.

x y z

x1
x′

1
x′′

1

G(v1) G(v2) G(v3)
H(u1)

H(u2) T ′

1

T1

Figure 2. Graph of Case 1.

Case 2. |{pG(x), pG(y), pG(z)}| = 3. Now we know that x, y′, z′ are three distinct

vertices in G(v1). Without loss of generality, we assume that y′ ∈ V (H(u2)), z′ ∈

V (H(u3)). As λ3(G(v1)) = k, there are k edge-disjoint trees connecting {x, y′, z′} in

G(v1), say T ′

j where 1 6 j 6 k. Let {Ti ; 1 6 i 6 l} be a set of l edge-disjoint trees

connecting {v1, v2, v3} in H since λ3(H) = l. Let k0, k1, . . . , kl be integers such that

0 = k0 < k1 < . . . < kl = k since k > l.

Subcase 2.1. xy′, xz′ 6∈ E(G(v1)). We need the following claim.

111



x1 x′

1
x′′

1

z′ z′′ z

y′ y y′′

x x′ x′′

G(v1) G(v2) G(v3)
H(u1)

H(u2)

H(u3)

T ′

j

Ti

(a)

1

2

z′ z′′ z

y′ y y′′

x x′ x′′

G(v1) G(v2) G(v3)

H(u1)

H(u2)

H(u3)

T ′

j

Ti

(b)

Figure 3. Graphs in the proof of Claim 1.

Claim 1. If xy′, xz′ 6∈ E(G(v1)), then there are ki − ki−1 + 1 edge-disjoint trees

connecting S in
( ki⋃
j=ki−1+1

T ′

j

)
� Ti for each 1 6 i 6 l.

Proof of Claim 1. For each 1 6 i 6 l and ki−1 + 1 6 j 6 ki − 1, we can construct

a tree connecting S in the graph T ′

j � Ti as shown in graph (a) of Figure 3. Note

that x1 ∈ V (T ′

j) is a neighbor of x in G(v1), and x′

1, x
′′

1 are vertices corresponding to

x1 in G(v2), G(v3), respectively. For simplicity, we also use Ti and T ′

j to denote the

tree connecting {x1, x
′

1, x
′′

1} and {x, y′, z′}, respectively, (see graph (a) of Figure 3).

For the case j = ki, in the graph T ′

ki
� Ti we can construct two trees connecting S as

shown in graph (b) of Figure 3. Thus, for each 1 6 i 6 l, in the graph
( ki⋃
j=ki−1+1

T ′

j

)
�

Ti we can get ki − ki−1 + 1 trees and it is not hard to show that any two of these

trees are edge-disjoint so that the claim holds.

Now for the case that xy′, xz′ 6∈ E(G(v1)), we can find
l∑

i=1

(ki − ki−1 + 1) = k + l

trees by Claim 1 and any two of these trees are edge-disjoint by the definition of the

Cartesian product.
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Subcase 2.2. xy′, xz′ ∈ E(G(v1)). If both xy′ and xz′ belong to the same tree,

named T ∈ {T ′

j ; 1 6 j 6 k}, then we reorder these trees so that T ′

k1
= T . With an

argument similar to that of Subcase 2.1, we can construct k + l edge-disjoint trees

connecting S.

If xy′ and xz′ belong to distinct trees, say T and T̃ , respectively. Clearly, both

of them are paths by the assumption of the note in the end of Section 2. If l > 2,

then we reorder the elements of {T ′

j ; 1 6 j 6 k} so that T ′

k1
= T and T ′

k2
= T̃ .

With an argument similar to that of Subcase 2.1, we can get k+ l edge-disjoint trees

connecting S. Otherwise, we have l = 1 and reorder the elements of {T ′

j ; 1 6 j 6 k}

so that T ′

k−1 = T and T ′

k = T̃ . For 1 6 j 6 k − 2, we can construct k − 2 trees

connecting S by a method similar to that of graph (a) in Figure 3. For j = k − 1,

we can use T ′

k−1 and T1 to construct two trees connecting S by a method similar

to that of graph (b) in Figure 3. If degG(v1)(x) = degG(v1)(z
′) = δ(G), we know

degG(v1)(x) = degG(v1)(z
′) > k+1 by Lemma 2.1; otherwise, we have degG(v1)(x) or

degG(v1)(z
′) > δ(G) + 1 > λ3(G) + 1 = k + 1. Without loss of generality, we assume

that degG(v1)(x) > k+1, which means that there exists a vertex, say xk+1, such that

xxk+1 6∈ E(T ′

j) for 1 6 j 6 k. Then we can use xxk+1, T ′

k and T1 to construct a new

tree connecting S as shown in Figure 4. Thus, we get k+ l trees in total for the case

l = 1 and it is not hard to show that any two of these trees are edge-disjoint.

x1
x′

1
x′′

1

z′ z′′ z

y′ y y′′

x x′ x′′

G(v1) G(v2) G(v3)
H(u1)

H(u2)

H(u3)

Tk

T1

Figure 4. The tree constructed from xxk+1, T
′

k and T1.

The remaining subcase is that exactly one of xy′, xz′ belongs to E(G(v1)). Without

loss of generality, we assume xy′ ∈ E(G(v1)).

Subcase 2.3. xy′ ∈ E(G(v1)). Let xy′ belong to the tree T ∈ {T ′

j ; 1 6 j 6 k},

then we reorder these trees so that T ′

k1
= T . By an argument similar to that of

Subcase 2.1, we can construct k + l edge-disjoint trees connecting S.

Case 3. |{pG(x), pG(y), pG(z)}| = 2. Now we have that two of x, y′, z′ are the

same vertex in G(v1). Since λ(G(v1)) > k, there exist k edge-disjoint x − y′ paths

Pi in G(v1) where 1 6 i 6 k. By an argument similar to that of Case 2, we can

construct at least k + l edge-disjoint trees connecting S. �
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Lemma 3.2. In the case that exactly two of i, j, k are the same, we can construct

at least k + l edge-disjoint trees connecting S.

P r o o f. Without loss of generality, we assume that i = j = 1 and k = 2. Fur-

thermore, we assume that x ∈ V (G(v1)) ∩ V (H(u1)) and y ∈ V (G(v1)) ∩ V (H(u2)).

In the case that z ∈ V (G(v2)) ∩ V (H(ui)) where i 6= 1, 2, we can construct k + l

edge-disjoint trees connecting S since it is similar to Case 3 of Lemma 3.1. So it

suffices to consider the case i = 1 (the case i = 2 is similar).

As λ(G) > λ3(G) = k and λ(H) > λ3(H) = l, there are at least k paths Pi : x =

ai,0, ai,1, . . . , ai,ti = y connecting x and y in graph G(v1) and l paths Qj : x = bj,0,

bj,1, . . . , bj,tj = z connecting x and z in graph H(u1) where 1 6 i 6 k, 1 6 j 6 l. We

set Pk := x, y if xy ∈ E(G(v1)) andQl := x, z if xz ∈ E(H(u1)). For 1 6 i 6 k−1, we

could construct a tree Ti := Pi ∪Qi
1∪{a′i,1, z} where a

′

i,1 is the vertex corresponding

to ai,1 in graph G(v2) and Qi
1 is the ai,1 − a′i,1 path corresponding to Q1 in graph

H(ai,1) (see the lines labelled by Ti in Figure 5). Similarly, for 1 6 j 6 l − 1, we

construct a tree T ′

j := Qj ∪ P j
1 ∪ {b′j,1, y} where b

′

j,1 is the vertex corresponding to

bj,1 in the graph H(u2) and P j
1 is the bj,1 − b′j,1 path corresponding to P1 in the

graph G(bj,1) (see the lines labelled by T ′

j in Figure 5).

If xy 6∈ E(G(v1)), we can construct a tree Tk from Pk which is similar to Ti

where 1 6 i 6 k − 1. In the case that xz 6∈ E(H(u1)), we can also construct

a tree T ′

l from Ql which is similar to T ′

j where 1 6 j 6 l − 1. Thus, we find

k + l edge-disjoint trees connecting S in total. In the case that xz ∈ E(H(u1)), if

degH(u1)(x) = degH(u1)(z) = δ(H(u1)), then we have l = λ3(H(u1)) 6 δ(H(u1))− 1

by Lemma 2.1, it means that x has a neighbor, say bl+1,1, which is distinct from bj,1

in the graphH(u1), where 1 6 j 6 l. We can construct a tree T ′

l := {xz}∪{xbl+1,1}∪

P l+1
1 ∪{yb′l+1,1}, where b

′

l+1,1 is the vertex corresponding to bl+1,1 in the graphH(u2)

and P l+1
1 is the path corresponding to P1 in G(bl+1,1) (see the lines labelled by T ′

l in

Figure 5). Thus, there are k+ l edge-disjoint trees connecting S in total. Otherwise,

we have degH(u1)(x) > δ(H(u1)) or degH(u1)(z) > δ(H(u1)), then using a similar

argument, we can also construct a tree T ′

l .

y
b′j,1

bj,1x

ai,1

z

b′l+1,1

bl+1,1

G(v1) G(v2) G(bl+1,1)

H(u2)

H(ai,1)

H(u1)

T ′

l

T ′

l

T ′

l

T ′

l

Ti

Ti Ti

Ti

T ′

j

T ′

j

T ′

j T ′

j

Figure 5. Trees in the graph.
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In the case xy ∈ E(G(v1)), using an argument similar to the above, we can

construct k + l edge-disjoint trees connecting S. �

The final case that i, j, k are the same is similar to Case 1 of Lemma 3.1, so the

following result holds.

Lemma 3.3. For the case that i, j, k are the same, we can construct at least

k + l edge-disjoint trees connecting S.

P r o o f of Theorem 1.4. By Lemmas 3.1, 3.2 and 3.3, we have λ3(G � H) >

λ3(G) + λ3(H). The following example and Proposition 4.1 imply that the bound is

sharp.

We use the graph of Example 3.1 in [7]: Let K2n(n > 2) be a complete graph with

vertex set V (K2n) = {ui ; 1 6 i 6 2n} and G a graph obtained from K2n by adding

a new vertex u and edge set {uui ; 1 6 i 6 n}.

For any vertex set S = {x, y, z} ⊆ V (G), if u 6∈ S, we clearly get at least 2n−⌈ 3
2⌉ =

2n− 2 > n edge-disjoint trees connecting S by Theorem 2.2.

Otherwise, we have u ∈ S and assume x = u. If y, z ∈ {ui ; 1 6 i 6 n}, without

loss of generality we assume that y = u1, z = u2. Let T1 and T2 be the paths

u, u1, un+1, u2 and u, u2, un+2, u1, respectively, and let Ti be the tree obtained from

uui and the path u1, ui, u2, where 3 6 i 6 n. If y, z ∈ {ui ; n+1 6 i 6 2n}, without

loss of generality we assume that y = un+1, z = un+2. Let Ti be the tree obtained

from the edges uui, uiun+1, uiun+2 for n + 1 6 i 6 2n. If y ∈ {ui ; 1 6 i 6 n}

and z ∈ {ui ; n + 1 6 i 6 2n}, without loss of generality we assume that y = u1,

z = un+1. Let T1 be the path u, u1, un+1 and Ti the tree obtained from the edges uui,

uiu1, uiun+1 for 2 6 i 6 n. It is easy to show that any two trees are edge-disjoint in

each case.

Thus, we have λ3(G) > n. Since λ3(G) 6 δ(G) = n, we have λ3(G) = n. So

λ3(G � Cm) > λ3(G) + λ3(Cm) = n + 1. As there are two adjacent vertices with

minimum degree n+2 in the graphG � Cm, we have λ3(G � Cm) 6 δ(G � Cm)−1 =

n+ 1 by Lemma 2.1. Thus, λ3(G � Cm) = λ3(G) + λ3(Cm). �

4. Results on special graph classes

For m > 3, the wheel graph Wn is defined as a graph constructed by joining a new

vertex to every vertex of a cycle Cm. The following result concerns the Cartesian

products of connected graphs with δ(G) = 1 and some special graph classes.
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Proposition 4.1. Let G be a connected graph with δ(G) = 1 and order n > 3.

(a) If H is a connected graph with δ(G) = 1 and orderm > 3, then λ3(G � H) = 2.

(b) If H is a cycle, then λ3(G � H) = 2.

(c) If H is a wheel graph, then λ3(G � H) = 3.

(d) If H is a complete graph with order m > 3, then λ3(G � H) = m− 1.

P r o o f. We first verify (a). If H is a connected graph with δ(G) = 1 and order

m > 3, then λ3(G � H) 6 δ(G � H) = 2. By Theorem 1.4, we have λ3(G � H) = 2.

We then verify (b). If H is a cycle, we have λ3(G � H) > λ3(G) + λ3(H) = 2 by

Theorem 1.4. Since δ(G � H) = 3 and there are two adjacent vertices of degree 3 in

G � Cm, we have λ3(G � Cm) 6 2 by Lemma 2.1. Thus, (b) holds.

It is easy to show that λ3(H) = 2 if H is a wheel graph. If H is a complete graph

with order m > 3, then λ3(H) = m− 2 by Theorem 2.2. By an argument similar to

that of (b), we can prove (c) and (d). �

Note that since any nontrivial tree is a connected graph with minimum degree 1,

Proposition 4.1 also determines the precise value for λ3(G � H), where G is a tree

of order at least 3 and H is a tree, a cycle, a wheel graph or a complete graph of

order at least 3.

We know Qr
∼= K2 � K2 � . . . � K2 is the r-hypercube, where r is the number of

K2. In [7], Li, Li and Sun derive that the precise value of κ3(Qr) equals r − 1. In

fact, we can get a similar result for λ3(Qr).

Proposition 4.2. λ3(Qr) = r − 1.

P r o o f. Since Qr is a r-regular graph, by Lemma 2.1 we have λ3(Qr) 6 r − 1.

We also have λ3(Qr) > κ3(Qr) = r − 1. Thus, the result holds. �
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