[2] Alomari, M. W., Darus, M., Kirmaci, U. S.:
Refinements of Hadamard-type inequalities for quasi-convex functions with applications to trapezoidal formula and to special means. Comput. Math. Appl. 59 225-232 (2010).
DOI 10.1016/j.camwa.2009.08.002 |
MR 2575509 |
Zbl 1189.26037
[3] Alomari, M., Darus, M.:
On some inequalities Simpson-type via quasi-convex functions with applications. Transylv. J. Math. Mech. 2 (2010), 15-24.
MR 2817188
[4] Alomari, M., Darus, M.:
Hadamard-type inequalities for $s$-convex functions. Int. Math. Forum 3 (2008), 1965-1975.
MR 2470655 |
Zbl 1163.26325
[5] Alomari, M., Darus, M.:
The Hadamard's inequality for $s$-convex function of $2$-variables on the co-ordinates. Int. J. Math. Anal., Ruse 2 (2008), 629-638.
MR 2482668 |
Zbl 1178.26017
[6] Alomari, M., Darus, M.:
Coordinated $s$-convex function in the first sense with some Hadamard-type inequalities. Int. J. Contemp. Math. Sci. 3 (2008), 1557-1567.
MR 2514034 |
Zbl 1178.26015
[10] Ion, D. A.:
Some estimates on the Hermite-Hadamard inequality through quasi-convex functions. An. Univ. Craiova, Ser. Mat. Inf. 34 (2007), 83-88.
MR 2517875 |
Zbl 1174.26321
[11] Bakula, M. Klaričić, Pečarić, J.:
On the Jensen's inequality for convex functions on the coordinates in a rectangle from the plane. Taiwanese J. Math. 10 (2006), 1271-1292.
DOI 10.11650/twjm/1500557302 |
MR 2253378
[12] Latif, M. A., Alomari, M.:
On Hadamard-type inequalities for $h$-convex functions on the co-ordinates. Int. J. Math. Anal., Ruse 3 (2009), 1645-1656.
MR 2657722
[13] Latif, M. A., Alomari, M.:
Hadamard-type inequalities for product two convex functions on the co-ordinates. Int. Math. Forum 4 (2009), 2327-2338.
MR 2579666 |
Zbl 1197.26029
[14] Özdemir, M. E., Kavurmacı, H., Akdemir, A. O., Avcı, M.:
Inequalities for convex and $s$-convex functions on $\Delta =[a,b]\times[c,d]$. J. Inequal. Appl. 2012:20 (2012), 19 pp doi:10.1186/1029-242X-2012-20.
DOI 10.1186/1029-242X-2012-20 |
MR 2935480
[15] Özdemir, M. E., Latif, M. A., Akdemir, A. O.:
On some Hadamard-type inequalities for product of two $s$-convex functions on the co-ordinates. J. Inequal. Appl. 2012:21 (2012), 13 pp doi:10.1186/1029-242X-2012-21.
DOI 10.1186/1029-242X-2012-21 |
MR 2892628
[16] Özdemir, M. E., Set, E., kaya, M. Z. Sarı:
Some new Hadamard type inequalities for co-ordinated $m$-convex and $(\alpha ,m)$-convex functions. Hacet. J. Math. Stat. 40 219-229 (2011).
MR 2839189
[17] Pečarić, J. E., Proschan, F., Tong, Y. L.:
Convex Functions, Partial Orderings and Statistical Applications. Academic Press, Boston (1992).
MR 1162312 |
Zbl 0749.26004
[18] Tseng, K.-L., Yang, G.-S., Dragomir, S. S.:
On quasi convex functions and Hadamard's inequality. Demonstr. Math. 41 323-336 (2008).
MR 2419910 |
Zbl 1151.26333