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Abstract. A function f : I → R, where I ⊆ R is an interval, is said to be a convex
function on I if

f(tx+ (1− t)y) 6 tf(x) + (1− t)f(y)

holds for all x, y ∈ I and t ∈ [0, 1]. There are several papers in the literature which
discuss properties of convexity and contain integral inequalities. Furthermore, new classes
of convex functions have been introduced in order to generalize the results and to obtain
new estimations.
We define some new classes of convex functions that we name quasi-convex, Jensen-

convex, Wright-convex, Jensen-quasi-convex and Wright-quasi-convex functions on the co-
ordinates. We also prove some inequalities of Hadamard-type as Dragomir’s results in
Theorem 5, but now for Jensen-quasi-convex and Wright-quasi-convex functions. Finally,
we give some inclusions which clarify the relationship between these new classes of functions.

Keywords: co-ordinate, quasi-convex, Wright-quasi-convex, Jensen-quasi-convex

MSC 2010 : 26D15

1. Introduction

Let f : I ⊂ R → R be a convex function on the interval I of real numbers and

a, b ∈ I with a < b. The double inequality

(1.1) f
(a + b

2

)

6
1

b − a

∫ b

a

f(x) dx 6
f(a) + f(b)

2

is well-known in the literature as Hadamard’s inequality. We recall some definitions:

In [17], Pečarić et al. defined quasi-convex functions as follows:
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Definition 1. A function f : [a, b] → R is said to be quasi-convex on [a, b] if

f(λx + (1 − λ)y) 6 max{f(x), f(y)}, (QC)

holds for all x, y ∈ [a, b] and λ ∈ [0, 1].

Clearly, any convex function is a quasi-convex function. Furthermore, there exist

quasi-convex functions which are not convex.

Definition 2 (See [8], [19]). We say that f : I → R is a Wright-convex function

or that f belongs to the class W (I), if for all x, y + δ ∈ I with x < y and δ > 0 we

have

f(x + δ) + f(y) 6 f(y + δ) + f(x).

Definition 3 (See [8]). For I ⊆ R, a mapping f : I → R is a Wright-quasi-convex

function if, for all x, y ∈ I and t ∈ [0, 1], one has the inequality

1

2
[f(tx + (1 − t)y) + f((1 − t)x + ty)] 6 max{f(x), f(y)}, (WQC)

or equivalently
1

2
[f(y) + f(x + δ)] 6 max{f(x), f(y + δ)}

for every x, y + δ ∈ I, x < y and δ > 0.

Definition 4 (See [8]). A mapping f : I → R is Jensen- or J-quasi-convex if

f
(x + y

2

)

6 max{f(x), f(y)} (JQC)

for all x, y ∈ I.

Note that the class JQC(I) of J-quasi-convex functions on I contains the class

J(I) of J-convex functions on I, that is, functions satisfying the condition

f
(x + y

2

)

6
f(x) + f(y)

2
(J)

for all x, y ∈ I.

In [8], Dragomir and Pearce proved the following theorems concerning J-quasi-

convex and Wright-quasi-convex functions.
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Theorem 1. Suppose a, b ∈ I ⊆ R and a < b. If f ∈ JQC(I) ∩ L1[a, b], then

(1.2) f
(a + b

2

)

6
1

b − a

∫ b

a

f(x) dx + I(a, b)

where

I(a, b) =
1

2

∫

1

0

|f(ta + (1 − t)b) − f((1 − t)a + tb)| dt.

Theorem 2. Let f : I → R be a Wright-quasi-convex map on I and suppose

a, b ∈ I ⊆ R with a < b and f ∈ L1[a, b]. Then one has the inequality

(1.3)
1

b − a

∫ b

a

f(x) dx 6 max{f(a), f(b)}.

In [8], Dragomir and Pearce also gave the following theorems involving some in-

clusions.

Theorem 3. Let WQC(I) denote the class of Wright-quasi-convex functions on

I ⊆ R, then

(1.4) QC(I) ⊂ WQC(I) ⊂ JQC(I).

Both the inclusions are proper.

Theorem 4. We have the inlusions

(1.5) W (I) ⊂ WQC(I), C(I) ⊂ QC(I), J(I) ⊂ JQC(I).

Each of the inclusions is proper.

For recent results related to quasi-convex functions see the papers [1]–[3], [10]–[18].

In [7], Dragomir defined co-ordinated convex functions and proved the following

inequalities.

Let us consider the bidimensional interval ∆ = [a, b] × [c, d] in R
2 with a < b and

c < d. A function f : ∆ → R will be called convex on the co-ordinates if the partial

mappings

fy : [a, b] → R, fy(u) = f(u, y)

and

fx : [c, d] → R, fx(v) = f(x, v)

are convex for all y ∈ [c, d] and x ∈ [a, b].
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Recall that a mapping f : ∆ → R is convex on ∆, if the inequality

(1.6) f(λx + (1 − λ)z, λy + (1 − λ)w) 6 λf(x, y) + (1 − λ)f(z, w)

holds for all (x, y), (z, w) ∈ ∆ and λ ∈ [0, 1].

Theorem 5 (See [7], Theorem 1). Suppose that f : ∆ = [a, b] × [c, d] → R is

convex on the co-ordinates on ∆. Then one has the inequalities

(1.7) f
(a + b

2
,
c + d

2

)

6
1

2

[

1

b − a

∫ b

a

f
(

x,
c + d

2

)

dx +
1

d − c

∫ d

c

f
(a + b

2
, y

)

dy

]

6
1

(b − a)(d − c)

∫ b

a

∫ d

c

f(x, y) dy dx

6
1

4

[

1

b − a

∫ b

a

f(x, c) dx +
1

b − a

∫ b

a

f(x, d) dx

+
1

d − c

∫ d

c

f(a, y) dy +
1

d − c

∫ d

c

f(b, y) dy

]

6
f(a, c) + f(b, c) + f(a, d) + f(b, d)

4
.

The above inequalities are sharp.

Similar results can be found in [4]–[7], [9], [12]–[16].

This paper is arranged as follows. First, we give some definitions on quasi-convex

functions and lemmas based on these definitions. Secondly, we prove several inequal-

ities concerning co-ordinated quasi-convex functions. Also, we discuss inclusions

connected with some different classes of co-ordinated convex functions.

2. Definitions and main results

We start with the following definitions and lemmas:

Definition 5. A function f : ∆ = [a, b] × [c, d] → R is called a quasi-convex

function on the co-ordinates on ∆ if the inequality

f(λx + (1 − λ)z, λy + (1 − λ)w) 6 max{f(x, y), f(z, w)}

holds for all (x, y), (z, w) ∈ ∆ and λ ∈ [0, 1].
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f : ∆ → R is called co-ordinated quasi-convex on the co-ordinates if the partial

mappings

fy : [a, b] → R, fy(u) = f(u, y)

and

fx : [c, d] → R, fx(v) = f(x, v)

are convex for all y ∈ [c, d] and x ∈ [a, b]. We denote by QC(∆) the classes of

quasi-convex functions on the co-ordinates on ∆.

The following lemma holds.

Lemma 6. Every quasi-convex mapping f : ∆ → R is quasi-convex on the co-

ordinates.

P r o o f. Suppose that f : ∆ = [a, b]× [c, d] → R is quasi-convex on ∆. Then the

partial mappings

fy : [a, b] → R, fy(u) = f(u, y), y ∈ [c, d]

and

fx : [c, d] → R, fx(v) = f(x, v), x ∈ [a, b]

are convex on ∆. For λ ∈ [0, 1] and v1, v2 ∈ [c, d] one has

fx(λv1 + (1 − λ)v2) = f(x, λv1 + (1 − λ)v2)

= f(λx + (1 − λ)x, λv1 + (1 − λ)v2)

6 max{f(x, v1), f(x, v2)}

= max{fx(v1), fx(v2)},

which completes the proof of quasi-convexity of fx on [c, d]. The proof that fy :

[a, b] → R, fy(u) = f(u, y) is also quasi-convex on [a, b] for all y ∈ [c, d], is analogous

and we omit the details. �

Definition 6. A function f : ∆ = [a, b]× [c, d] → R is called a J-convex function

on the co-ordinates on ∆ if the inequality

f
(x + z

2
,
y + w

2

)

6
f(x, y) + f(z, w)

2

holds for all (x, y), (z, w) ∈ ∆. We denote by J(∆) the class of J-convex functions

on the co-ordinates on ∆.
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Lemma 7. Every J-convex mapping f : ∆ → R is J-convex on the co-ordinates.

P r o o f. As concerns the partial mappings, we can write for v1, v2 ∈ [c, d],

fx

(v1 + v2

2

)

= f
(

x,
v1 + v2

2

)

= f
(x + x

2
,
v1 + v2

2

)

6
f(x, v1) + f(x, v2)

2
=

fx(v1) + fx(v2)

2
,

which completes the proof of J-convexity of fx on [c, d]. Similarly, we can prove J-

convexity of fy on [a, b]. �

Definition 7. A function f : ∆ = [a, b] × [c, d] → R is called a J-quasi-convex

function on the co-ordinates on ∆ if the inequality

f
(x + z

2
,
y + w

2

)

6 max{f(x, y), f(z, w)}

holds for all (x, y), (z, w) ∈ ∆. We denote by JQC(∆) the class of J-quasi-convex

functions on the co-ordinates on ∆.

Lemma 8. Every J-quasi-convex mapping f : ∆ → R is J-quasi-convex on the

co-ordinates.

P r o o f. In a way similar to the proof of Lemma 7, we can write for v1, v2 ∈ [c, d]

fx

(v1 + v2

2

)

= f
(

x,
v1 + v2

2

)

= f
(x + x

2
,
v1 + v2

2

)

6 max{f(x, v1), f(x, v2)} = max{fx(v1), fx(v2)},

which completes the proof of J-quasi-convexity of fx on [c, d]. We can also prove

J-quasi-convexity of fy on [a, b]. �

Definition 8. A function f : ∆ = [a, b] × [c, d] → R is called a Wright-convex

function on the co-ordinates on ∆ if the inequality

f((1 − t)a + tb, (1 − s)c + sd) + f(ta + (1 − t)b, sc + (1 − s)d) 6 f(a, c) + f(b, d)

holds for all (a, c), (b, d) ∈ ∆ and t, s ∈ [0, 1]. We denote by W (∆) the class of

Wright-convex functions on the co-ordinates on ∆.
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Lemma 9. Every Wright-convex mapping f : ∆ → R is Wright-convex on the

co-ordinates.

P r o o f. Suppose that f : ∆ → R is Wright-convex on ∆. Then for the partial

mapping, for v1, v2 ∈ [c, d], x ∈ [a, b], we have

fx((1 − t)v1 + tv2) + fx(tv1 + (1 − t)v2)

= f(x, (1 − t)v1 + tv2) + f(x, tv1 + (1 − t)v2)

= f((1 − t)x + tx, (1 − t)v1 + tv2) + f(tx + (1 − t)x, tv1 + (1 − t)v2)

6 f(x, v1) + f(x, v2)

= fx(v1) + fx(v2),

which shows that fx is Wright-convex on [c, d]. Similarly one can see that fy is

Wright-convex on [a, b]. �

Definition 9. A function f : ∆ = [a, b] × [c, d] → R is called a Wright-quasi-

convex function on the co-ordinates on ∆ if the inequality

1

2
[f(tx+(1−t)z, ty+(1−t)w)+f((1−t)x+tz, (1−t)y+tw)] 6 max{f(x, y), f(z, w)}

holds for all (x, y), (z, w) ∈ ∆ and t ∈ [0, 1]. We denote by WQC(∆) the class of

Wright-quasi-convex functions on the co-ordinates on ∆.

Lemma 10. Every Wright-quasi-convex mapping f : ∆ → R is Wright-quasi-

convex on the co-ordinates.

P r o o f. Suppose that f : ∆ → R is Wright-quasi-convex on ∆. Then for the

partial mapping, for v1, v2 ∈ [c, d], we have

1

2
[fx(tv1 + (1 − t)v2) + fx((1 − t)v1 + tv2)]

=
1

2
[f(x, tv1 + (1 − t)v2) + f(x, (1 − t)v1 + tv2)]

=
1

2
[f(tx + (1 − t)x, tv1 + (1 − t)v2) + f((1 − t)x + tx, (1 − t)v1 + tv2)]

6 max{f(x, v1), f(x, v2)} = max{fx(v1), fx(v2)},

which shows that fx is Wright-quasi-convex on [c, d]. Similarly one can see that fy

is Wright-quasi-convex on [a, b]. �
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Theorem 11. Suppose that f : ∆ = [a, b] × [c, d] → R is J-quasi-convex on the

co-ordinates on ∆. If fx ∈ L1[c, d] and fy ∈ L1[a, b], then we have the inequality

(2.1)
1

2

[

1

b − a

∫ b

a

f
(

x,
c + d

2

)

dx +
1

d − c

∫ d

c

f
(a + b

2
, y

)

dy

]

6
1

(b − a)(d − c)

∫ d

c

∫ b

a

f(x, y) dxdy + H(x, y)

where

H(x, y) =
1

4(d − c)

∫ d

c

∫

1

0

|f(ta + (1 − t)b, y) − f((1 − t)a + tb, y)| dt dy

+
1

4(b − a)

∫ b

a

∫

1

0

|f(x, tc + (1 − t)d) − f(x, (1 − t)c + td)| dt dx.

P r o o f. Since f : ∆ → R is J-quasi-convex on the co-ordinates on ∆, the partial

mappings

fy : [a, b] → R, fy(u) = f(u, y), y ∈ [c, d]

and

fx : [c, d] → R, fx(v) = f(x, v), x ∈ [a, b]

are J-quasi-convex on ∆. Then by the inequality (1.2), we have

fy

(a + b

2

)

6
1

b − a

∫ b

a

fy(x) dx +
1

2

∫

1

0

|fy(ta + (1 − t)b) − fy((1 − t)a + tb)| dt,

that is

f
(a + b

2
, y

)

6
1

b − a

∫ b

a

f(x, y) dx+
1

2

∫

1

0

|f(ta +(1− t)b, y)− f((1− t)a + tb, y)| dt.

Integrating the resulting inequality with respect to y over [c, d] and dividing both

sides of the inequality by (d − c), we get

(2.2)
1

d − c

∫ d

c

f
(a + b

2
, y

)

dy 6
1

(b − a)(d − c)

∫ d

c

∫ b

a

f(x, y) dxdy

+
1

2(d − c)

∫ d

c

∫

1

0

|f(ta + (1 − t)b, y) − f((1 − t)a + tb, y)| dt dy.

By a similar argument, we have

(2.3)
1

b − a

∫ b

a

f
(

x,
c + d

2

)

dx 6
1

(b − a)(d − c)

∫ b

a

∫ d

c

f(x, y) dy dx

+
1

2(b − a)

∫ b

a

∫

1

0

|f(x, tc + (1 − t)d) − f(x, (1 − t)c + td)| dt dx.

Summing (2.2) and (2.3), we get the required result. �
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Theorem 12. Suppose that f : ∆ = [a, b]× [c, d] → R is Wright-quasi-convex on

the co-ordinates on ∆. If fx ∈ L1[c, d] and fy ∈ L1[a, b], then we have the inequality

(2.4)
1

(b − a)(d − c)

∫ d

c

∫ b

a

f(x, y) dxdy

6
1

2

[

max

{

1

(b − a)

∫ b

a

f(x, c) dx,
1

(b − a)

∫ b

a

f(x, d) dx

}

+ max

{

1

(d − c)

∫ d

c

f(a, y) dy,
1

(d − c)

∫ d

c

f(b, y) dy

}]

.

P r o o f. Since f : ∆ → R is Wright-quasi-convex on the co-ordinates on ∆, the

partial mappings

fy : [a, b] → R, fy(u) = f(u, y), y ∈ [c, d]

and

fx : [c, d] → R, fx(v) = f(x, v), x ∈ [a, b]

are Wright-quasi-convex on ∆. Then by the inequality (1.3), we have

1

b − a

∫ b

a

fy(x) dx 6 max{fy(a), fy(b)},

that is
1

b − a

∫ b

a

f(x, y) dx 6 max{f(a, y), f(b, y)}.

Dividing both sides of the inequality by (d − c) and integrating with respect to y

over [c, d] , we get

(2.5)
1

(b − a)(d − c)

∫ d

c

∫ b

a

f(x, y) dxdy

6 max

{

1

(d − c)

∫ d

c

f(a, y) dy,
1

(d − c)

∫ d

c

f(b, y) dy

}

.

By a similar argument, we can write

(2.6)
1

(b − a)(d − c)

∫ d

c

∫ b

a

f(x, y) dxdy

6 max

{

1

(b − a)

∫ b

a

f(x, c) dx,
1

(b − a)

∫ b

a

f(x, d) dx

}

.
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By adding (2.5) and (2.6), we have

1

(b − a)(d − c)

∫ d

c

∫ b

a

f(x, y) dxdy

6
1

2

[

max

{

1

(b − a)

∫ b

a

f(x, c) dx,
1

(b − a)

∫ b

a

f(x, d) dx

}

+ max

{

1

(d − c)

∫ d

c

f(a, y) dy,
1

(d − c)

∫ d

c

f(b, y) dy

}]

,

which completes the proof. �

Theorem 13. Let C(∆), J(∆), W (∆), QC(∆), JQC(∆), WQC(∆) denote,

respectively the classes of co-ordinated convex, co-ordinated J-convex, co-ordinated

W -convex, co-ordinated quasi-convex, co-ordinated J-quasi-convex and co-ordinated

W -quasi-convex functions on ∆ = [a, b] × [c, d]. Then we have the inclusions

QC(∆) ⊂ WQC(∆) ⊂ JQC(∆),(2.7)

W (∆) ⊂ WQC(∆), C(∆) ⊂ J(∆), J(∆) ⊂ JQC(∆).(2.8)

P r o o f. Let f ∈ QC(∆). Then for all (x, y), (z, w) ∈ ∆ and t ∈ [0, 1], we have

f(λx + (1 − λ)z, λy + (1 − λ)w) 6 max{f(x, y), f(z, w)},

f((1 − λ)x + λz, (1 − λ)y + λw) 6 max{f(x, y), f(z, w)}.

By adding the inequalities we obtain

(2.9)
1

2
[f(λx + (1 − λ)z, λy + (1 − λ)w) + f((1 − λ)x + λz, (1 − λ)y + λw)]

6 max{f(x, y), f(z, w)}

that is, f ∈ WQC(∆). In (2.9), if we choose λ = 1

2
, we obtainWQC(∆) ⊂ JQC(∆).

This completes the proof of (2.7).

In order to prove (2.8), taking f ∈ W (∆) and using the definition, we get

1

2
[f((1 − t)a + tb, (1 − s)c + sd) + f(ta + (1 − t)b, sc + (1 − s)d)] 6

f(a, c) + f(b, d)

2

for all (a, c), (b, d) ∈ ∆ and t ∈ [0, 1]. Using the fact that

f(a, c) + f(b, d) + |f(a, c) − f(b, d)|

2
= max{f(a, c), f(b, d)}
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we can write
f(a, c) + f(b, d)

2
6 max{f(a, c), f(b, d)}

for all (a, c), (b, d) ∈ ∆, thus obtaining W (∆) ⊂ WQC(∆).

Taking f ∈ C(∆) and choosing t = 1

2
in (1.6), we obtain

f
(x + z

2
,
y + w

2

)

6
f(x, y) + f(z, w)

2

for all (x, y), (z, w) ∈ ∆. One can see that C(∆) ⊂ J(∆).

Taking f ∈ J(∆), we can write

f
(x + z

2
,
y + w

2

)

6
f(x, y) + f(z, w)

2

for all (x, y), (z, w) ∈ ∆. Using the fact that

f(x, y) + f(z, w) + |f(x, y) − f(z, w)|

2
= max{f(x, y), f(z, w)}

we can write
f(x, y) + f(z, w)

2
6 max{f(x, y), f(z, w)}.

Then obviously, we obtain

f
(x + z

2
,
y + w

2

)

6 max{f(x, y), f(z, w)},

which shows that f ∈ JQ(∆). �
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