Previous |  Up |  Next

Article

Keywords:
Hardy spaces; essentially normal; composition operator; linear-fractional transformation
Summary:
In 1999 Nina Zorboska and in 2003 P. S. Bourdon, D. Levi, S. K. Narayan and J. H. Shapiro investigated the essentially normal composition operator $C_{\varphi }$, when $\varphi $ is a linear-fractional self-map of $\mathbb {D}$. In this paper first, we investigate the essential normality problem for the operator $T_{w}C_{\varphi }$ on the Hardy space $H^{2}$, where $w$ is a bounded measurable function on $\partial \mathbb {D}$ which is continuous at each point of $F(\varphi )$, $\varphi \in {\cal S}(2)$, and $T_{w}$ is the Toeplitz operator with symbol $w$. Then we use these results and characterize the essentially normal finite linear combinations of certain linear-fractional composition operators on $H^{2}$.
References:
[1] Aleksandrov, A. B.: Multiplicity of boundary values of inner functions. Izv. Akad. Nauk Arm. SSR, Ser. Mat. 22 (1987), 490-503. MR 0931885 | Zbl 0648.30002
[2] Bourdon, P. S.: Components of linear-fractional composition operators. J. Math. Anal. Appl. 279 (2003), 228-245. DOI 10.1016/S0022-247X(03)00004-0 | MR 1970503 | Zbl 1043.47021
[3] Bourdon, P. S., Levi, D., Narayan, S. K., Shapiro, J. H.: Which linear-fractional composition operators are essentially normal?. J. Math. Anal. Appl. 280 (2003), 30-53. DOI 10.1016/S0022-247X(03)00005-2 | MR 1972190 | Zbl 1024.47008
[4] Chacón, G. A., Chacón, G. R.: Some properties of composition operators on the Dirichlet space. Acta Math. Univ. Comen., New Ser. 74 (2005), 259-272. MR 2195485 | Zbl 1151.47033
[5] Clark, D. N.: One-dimensional perturbations of restricted shifts. J. Anal. Math. 25 (1972), 169-191. DOI 10.1007/BF02790036 | MR 0301534 | Zbl 0252.47010
[6] Cowen, C. C.: Linear fractional composition operators on $H^{2}$. Integral Equations Oper. Theory 11 (1988), 151-160. DOI 10.1007/BF01272115 | MR 0928479
[7] Cowen, C. C., MacCluer, B. D.: Composition Operators on Spaces of Analytic Functions. CRC Press Boca Raton (1995). MR 1397026 | Zbl 0873.47017
[8] Duren, P. L.: Theory of $H^{p}$ Spaces. Academic Press New York (1970). MR 0268655
[9] Heller, K., MacCluer, B. D., Weir, R. J.: Compact differences of composition operators in several variables. Integral Equations Oper. Theory 69 (2011), 247-268. DOI 10.1007/s00020-010-1840-5 | MR 2765588 | Zbl 1241.47022
[10] Kriete, T. L., MacCluer, B. D., Moorhouse, J. L.: Toeplitz-composition $C^{\ast}$-algebras. J. Oper. Theory 58 (2007), 135-156. MR 2336048 | Zbl 1134.47303
[11] Kriete, T. L., Moorhouse, J. L.: Linear relations in the Calkin algebra for composition operators. Trans. Am. Math. Soc. 359 (2007), 2915-2944. DOI 10.1090/S0002-9947-07-04166-9 | MR 2286063 | Zbl 1115.47023
[12] MacCluer, B. D., Weir, R. J.: Essentially normal composition operators on Bergman spaces. Acta Sci. Math. 70 (2004), 799-817. MR 2107542 | Zbl 1087.47031
[13] MacCluer, B. D., Weir, R. J.: Linear-fractional composition operators in several variables. Integral Equations Oper. Theory 53 (2005), 373-402. DOI 10.1007/s00020-005-1372-6 | MR 2186097 | Zbl 1121.47017
[14] Moorhouse, J.: Compact differences of composition operators. J. Funct. Anal. 219 (2005), 70-92. DOI 10.1016/j.jfa.2004.01.012 | MR 2108359 | Zbl 1087.47032
[15] Poltoratski, A. G.: The boundary behavior of pseudocontinuable functions. St. Petersb. Math. J. 5 (1994), 389-406 translation from 389-406 Algebra Anal. 5 (1993), 189-210. MR 1223178
[16] Ryff, J. V.: Subordinate $H^{p}$ functions. Duke Math. J. 33 (1966), 347-354. DOI 10.1215/S0012-7094-66-03340-0 | MR 0192062
[17] Sarason, D. E.: Sub-Hardy Hilbert Spaces in the Unit Disk. University of Arkansas Lecture Notes in the Mathematical Sciences, Vol. 10 John Wiley & Sons New York (1994). MR 1289670
[18] Schwartz, H. J.: Composition operators on $H^{p}$. Ph.D. Thesis University of Toledo (1969). MR 2618707
[19] Shapiro, J. H.: Composition Operators and Classical Function Theory. Springer New York (1993). MR 1237406 | Zbl 0791.30033
[20] Shapiro, J. H., Taylor, P. D.: Compact, nuclear, and Hilbert-Schmidt composition operators on $H^{2}$. Indiana Univ. Math. J. 23 (1973), 471-496. MR 0326472
[21] Zorboska, N.: Closed range essentially normal composition operators are normal. Acta Sci. Math. 65 (1999), 287-292. MR 1702203 | Zbl 0938.47022
Partner of
EuDML logo