[1] Aleksandrov, A. B.:
Multiplicity of boundary values of inner functions. Izv. Akad. Nauk Arm. SSR, Ser. Mat. 22 (1987), 490-503.
MR 0931885 |
Zbl 0648.30002
[4] Chacón, G. A., Chacón, G. R.:
Some properties of composition operators on the Dirichlet space. Acta Math. Univ. Comen., New Ser. 74 (2005), 259-272.
MR 2195485 |
Zbl 1151.47033
[7] Cowen, C. C., MacCluer, B. D.:
Composition Operators on Spaces of Analytic Functions. CRC Press Boca Raton (1995).
MR 1397026 |
Zbl 0873.47017
[8] Duren, P. L.:
Theory of $H^{p}$ Spaces. Academic Press New York (1970).
MR 0268655
[10] Kriete, T. L., MacCluer, B. D., Moorhouse, J. L.:
Toeplitz-composition $C^{\ast}$-algebras. J. Oper. Theory 58 (2007), 135-156.
MR 2336048 |
Zbl 1134.47303
[12] MacCluer, B. D., Weir, R. J.:
Essentially normal composition operators on Bergman spaces. Acta Sci. Math. 70 (2004), 799-817.
MR 2107542 |
Zbl 1087.47031
[15] Poltoratski, A. G.:
The boundary behavior of pseudocontinuable functions. St. Petersb. Math. J. 5 (1994), 389-406 translation from 389-406 Algebra Anal. 5 (1993), 189-210.
MR 1223178
[17] Sarason, D. E.:
Sub-Hardy Hilbert Spaces in the Unit Disk. University of Arkansas Lecture Notes in the Mathematical Sciences, Vol. 10 John Wiley & Sons New York (1994).
MR 1289670
[18] Schwartz, H. J.:
Composition operators on $H^{p}$. Ph.D. Thesis University of Toledo (1969).
MR 2618707
[19] Shapiro, J. H.:
Composition Operators and Classical Function Theory. Springer New York (1993).
MR 1237406 |
Zbl 0791.30033
[20] Shapiro, J. H., Taylor, P. D.:
Compact, nuclear, and Hilbert-Schmidt composition operators on $H^{2}$. Indiana Univ. Math. J. 23 (1973), 471-496.
MR 0326472
[21] Zorboska, N.:
Closed range essentially normal composition operators are normal. Acta Sci. Math. 65 (1999), 287-292.
MR 1702203 |
Zbl 0938.47022