[1] Arnold, L.:
Stochastic Differential Equations: Theory and Applications. A Wiley-Interscience Publication. New York etc.: John Wiley & Sons (1974).
MR 0443083 |
Zbl 0278.60039
[4] Buse, C., Barbu, D.:
The Lyapunov equations and nonuniform exponential stability. Stud. Cerc. Mat. 49 (1997), 25-31.
MR 1671501 |
Zbl 0893.93031
[7] Prato, G. Da, Zabczyk, J.:
Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications. 44 Cambridge etc. Cambridge University Press (1992).
MR 1207136 |
Zbl 0761.60052
[12] Megan, M., Sasu, A. L., Sasu, B.:
Nonuniform exponential unstability of evolution operators in Banach spaces. Glas. Mat., III. Ser. 36 (2001), 287-295.
MR 1884449 |
Zbl 1008.34053
[13] Mohammed, S. - E. A., Zhang, T., Zhao, H.:
The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations. Mem. Am. Math. Soc. 196 (2008), 1-105.
MR 2459571 |
Zbl 1169.60014
[14] Skorohod, A. V.:
Random Linear Operators, Transl. from the Russian. Mathematics and Its Applications. Soviet Series., D. Reidel Publishing Company, Dordrecht, Boston, Lancaster (1984).
MR 0733994
[15] Stoica, C., Megan, M.:
Nonuniform behaviors for skew-evolution semiflows in Banach spaces. Operator theory live. Proceedings of the 22nd international conference on operator theory, Timişoara, Romania, July 3-8, 2008. Bucharest: The Theta Foundation. Theta Series in Advanced Mathematics 12 (2010), 203-211.
MR 2731875