[1] Bapat, R. B.:
Structure of a nonnegative regular matrix and its generalized inverses. Linear Algebra Appl. 268 (1998), 31-39.
MR 1480331 |
Zbl 0885.15015
[2] Beasley, L. B., Guterman, A. E., Lee, S.-G., Song, S.-Z.:
Linear transformations preserving the Grassmannian over $M_{n}(Z_{+})$. Linear Algebra Appl. 393 (2004), 39-46.
MR 2098603
[3] Beasley, L. B., Guterman, A. E.:
The characterization of operators preserving primitivity for matrix $k$-tuples. Linear Algebra Appl. 430 (2009), 1762-1777.
MR 2494662 |
Zbl 1168.15010
[4] Beasley, L. B., Lee, S. G.:
Linear operations strongly preserving $r$-potent matrices over semirings. Linear Algebra Appl. 162-164 (1992), 589-599.
MR 1148418
[8] Beasley, L. B., Pullman, N. J.:
Linear operators strongly preserving idempotent matrices over semirings. Linear Algebra Appl. 160 (1992), 217-229.
MR 1137853 |
Zbl 0744.15010
[9] Dénes, J.:
Transformations and transformation semigroups I. Seminar Report. Magyar Tud. Akad., Mat. Fiz. Tud. Oszt. Közl. 19 (1969), 247-269 Hungarian.
MR 0274612
[11] Kim, K. H.:
Boolean Matrix Theory and Applications. Pure Appl. Math., Vol. 70 Marcel Dekker New York (1982).
MR 0655414 |
Zbl 0495.15003
[12] Kang, K.-T., Song, S.-Z., Jun, Y.-B.:
Linear operators that strongly preserve regularity of fuzzy matrices. Math. Commun. 15 (2010), 243-254.
MR 2668997 |
Zbl 1200.15013
[13] Kirkland, S., Pullman, N. J.:
Linear operators preserving invariants of non-binary Boolean matrices. Linear Multilinear Algebra 33 (1993), 295-300.
DOI 10.1080/03081089308818200 |
MR 1334678
[14] Li, H. H., Tan, Y. J., Tang, J. M.:
Linear operators that strongly preserve invertible matrices over antinegative semirings. J. Univ. Sci. Technol. China 37 (2007), 238-242.
MR 2330655 |
Zbl 1174.15304
[23] Song, S.-Z., Kang, K.-T., Beasley, L. B., Sze, N.-S.:
Regular matrices and their strong preservers over semirings. Linear Algebra Appl. 429 (2008), 209-223.
MR 2419150 |
Zbl 1152.15004
[26] Song, S.-Z., Lee, S.-G.:
Column ranks and their preservers of general Boolean matrices. J. Korean Math. Soc. 32 (1995), 531-540.
MR 1355672 |
Zbl 0837.15001