[3] Cvetković, D. M., Doob, M., Sachs, H.:
Spectra of Graphs. VEB Deutscher Verlag der Wissenschaften Berlin (1980).
Zbl 0458.05042
[6] Fan, Y. Z., Xu, J., Wang, Y., Liang, D.:
The Laplacian spread of a tree. Discrete Math. Theor. Comput. Sci. 10 (2008), 79-86 Electronic only.
MR 2383736 |
Zbl 1153.05323
[7] Fan, Y., Li, S., Tan, Y.:
The Laplacian spread of bicyclic graphs. J. Math. Res. Expo. 30 (2010), 17-28.
MR 2605816
[10] Gregory, D. A., Hershkowitz, D., Kirkland, S. J.:
The spread of the spectrum of a graph. Linear Algebra Appl. 332-334 (2001), 23-35.
MR 1839425 |
Zbl 0978.05049
[15] Li, J., Shiu, W. C., Chan, W. H.:
Some results on the Laplacian eigenvalues of unicyclic graphs. Linear Algebra Appl. 430 (2009), 2080-2093.
MR 2503955 |
Zbl 1225.05169
[16] Li, P., Shi, J. S., Li, R. L.:
Laplacian spread of bicyclic graphs. J. East China Norm. Univ. (Nat. Sci. Ed.) 1 (2010), 6-9 Chinese.
MR 2682387
[17] Liu, H., Lu, M., Tian, F.:
On the Laplacian spectral radius of a graph. Linear Algebra Appl. 376 (2004), 135-141.
MR 2014889 |
Zbl 1032.05087
[20] Merris, R.:
Laplacian matrices of graphs: A survey. Linear Algebra Appl. 197-198 (1994), 143-176.
MR 1275613 |
Zbl 0802.05053
[22] Ozeki, N.:
On the estimation of the inequality by the maximum. J. College Arts Chiba Univ. 5 (1968), 199-203.
MR 0254198
[25] Zhang, X.:
On the two conjectures of Graffiti. Linear Algebra Appl. 385 (2004), 369-379.
MR 2063360 |
Zbl 1051.05062