Previous |  Up |  Next

Article

Keywords:
twisted tensor product; invariance under twisting; duality theorem
Summary:
The so-called “invariance under twisting” for twisted tensor products of algebras is a result stating that, if we start with a twisted tensor product, under certain circumstances we can “deform” the twisting map and we obtain a new twisted tensor product, isomorphic to the given one. It was proved before that a number of independent and previously unrelated results from Hopf algebra theory are particular cases of this theorem. In this article we show that some more results from literature are particular cases of invariance under twisting, for instance a result of Beattie-Chen-Zhang that implies the Blattner-Montgomery duality theorem.
References:
[1] Beattie, M., Chen, C.-Y., Zhang, J. J.: Twisted Hopf comodule algebras. Commun. Algebra 24 (1996), 1759-1775. DOI 10.1080/00927879608825669 | MR 1386496 | Zbl 0851.16031
[2] Čap, A., Schichl, H., Vanžura, J.: On twisted tensor products of algebras. Commun. Algebra 23 (1995), 4701-4735. DOI 10.1080/00927879508825496 | MR 1352565 | Zbl 0842.16005
[3] Luigi, C. Di, Guccione, J. A., Guccione, J. J.: Brzeziński's crossed products and braided Hopf crossed products. Commun. Algebra 32 (2004), 3563-3580. DOI 10.1081/AGB-120039631 | MR 2097479 | Zbl 1080.16040
[4] Fiore, G.: On the decoupling of the homogeneous and inhomogeneous parts in inhomogeneous quantum groups. J. Phys. A, Math. Gen. 35 (2002), 657-678. DOI 10.1088/0305-4470/35/3/312 | MR 1957140 | Zbl 1041.81064
[5] Fiore, G., Steinacker, H., Wess, J.: Unbraiding the braided tensor product. J. Math. Phys. 44 (2003), 1297-1321. DOI 10.1063/1.1522818 | MR 1958269 | Zbl 1062.16044
[6] Guccione, J. A., Guccione, J. J.: Semiquasitriangular Hopf algebras. Electronic preprint arXiv:math.QA/0302052.
[7] Guccione, J. A., Guccione, J. J.: Theory of braided Hopf crossed products. J. Algebra 261 (2003), 54-101. DOI 10.1016/S0021-8693(02)00546-X | MR 1967157 | Zbl 1017.16032
[8] Martínez, P. Jara, Peña, J. López, Panaite, F., Oystaeyen, F. Van: On iterated twisted tensor products of algebras. Int. J. Math. 19 (2008), 1053-1101. DOI 10.1142/S0129167X08004996 | MR 2458561
[9] Majid, S.: Doubles of quasitriangular Hopf algebras. Commun. Algebra 19 (1991), 3061-3073. DOI 10.1080/00927879108824306 | MR 1132774 | Zbl 0767.16014
[10] Năstăsescu, C., Panaite, F., Oystaeyen, F. Van: External homogenization for Hopf algebras: Applications to Maschke's theorem. Algebr. Represent. Theory 2 (1999), 211-226. DOI 10.1023/A:1009931309850 | MR 1715183
[11] Daele, A. Van, Keer, S. Van: The Yang-Baxter and pentagon equation. Compos. Math. 91 (1994), 201-221. MR 1273649 | Zbl 0811.17014
Partner of
EuDML logo