[1] Bondy, J. A., Murty, U. S. R.:
Graph Theory with Applications. Macmillan Press (1976).
MR 0411988
[2] Erdös, P., Jacobson, M. S., Lehel, J.:
Graphs realizing the same degree sequences and their respective clique numbers. In: Graph Theory, Combinatorics and Application, Vol. 1 Y. Alavi et al. John Wiley and Sons New York (1991), 439-449.
MR 1170797
[3] Gould, R. J., Jacobson, M. S., Lehel, J.:
Potentially $G$-graphic degree sequences. Combinatorics, Graph Theory and Algorithms, Vol. 2 Y. Alavi et al. New Issues Press Kalamazoo (1999), 451-460.
MR 1985076
[5] Ferrara, M., Schmitt, R. Gould,J.: Potentially $K_s^t$-graphic degree sequences. Submitted.
[6] Ferrara, M., Gould, R., Schmitt, J.: Graphic sequences with a realization containing a friendship graph. Ars Comb Accepted.
[7] Hu, Lili, Lai, Chunhui: On potentially $K_5-C_4$-graphic sequences. Ars Comb Accepted.
[8] Hu, Lili, Lai, Chunhui: On potentially $K_5-Z_4$-graphic sequences. Submitted.
[10] Lai, Chunhui:
A note on potentially $K_4-e$ graphical sequences. Australas J. Comb. 24 (2001), 123-127.
MR 1852813 |
Zbl 0983.05025
[11] Lai, Chunhui: An extremal problem on potentially $K_m-P_k$-graphic sequences. Int. J. Pure Appl. Math Accepted.
[12] Lai, Chunhui:
An extremal problem on potentially $K_m-C_4$-graphic sequences. J. Comb. Math. Comb. Comput. 61 (2007), 59-63.
MR 2322201 |
Zbl 1139.05016
[13] Lai, Chunhui:
An extremal problem on potentially $K_{p,1,1}$-graphic sequences. Discret. Math. Theor. Comput. Sci. 7 (2005), 75-80.
MR 2164060 |
Zbl 1153.05021
[14] Lai, Chunhui, Hu, Lili: An extremal problem on potentially $K_{r+1}-H$-graphic sequences. Ars Comb Accepted.
[15] Lai, Chunhui: The smallest degree sum that yields potentially $K_{r+1}-Z$-graphical sequences. Ars Comb Accepted.
[16] Li, Jiong-Sheng, Song, Zi-Xia: An extremal problem on the potentially $P_k$-graphic sequences. In: Proc. International Symposium on Combinatorics and Applications, June 28-30, 1996 W. Y. C. Chen et. al. Nankai University Tianjin (1996), 269-276.
[18] Li, Jiong-sheng, Song, Zi-Xia, Luo, Rong:
The Erdös-Jacobson-Lehel conjecture on potentially $P_k$-graphic sequence is true. Sci. China (Ser. A) 41 (1998), 510-520.
DOI 10.1007/BF02879940 |
MR 1663175
[20] Luo, R.:
On potentially $C_k$-graphic sequences. Ars Comb. 64 (2002), 301-318.
MR 1914218
[21] Luo, R., Warner, M.:
On potentially $K_k$-graphic sequences. Ars Combin. 75 (2005), 233-239.
MR 2133225 |
Zbl 1075.05021
[22] Eschen, E. M., Niu, J.:
On potentially $K_4-e$-graphic sequences. Australas J. Comb. 29 (2004), 59-65.
MR 2037333 |
Zbl 1049.05027
[24] Yin, J.-H., Li, J.-S., Mao, R.:
An extremal problem on the potentially $K_{r+1}-e$-graphic sequences. Ars Comb. 74 (2005), 151-159.
MR 2118998
[25] Yin, J.-H., Chen, G.:
On potentially $K_{r_1,r_2,\cdots,r_m}$-graphic sequences. Util. Math. 72 (2007), 149-161.
MR 2306237