[1] Cignoli, R., D'Ottaviano, M. I., Mundici, D.:
Algebraic Foundations of Many-Valued Reasoning. Trends in Logic, Studia Logica Library Vol. 7. Kluwer Dordrecht (2000).
DOI 10.1007/978-94-015-9480-6
[5] Dvurečenskij, A., Vetterlein, T.:
Infinitary lattice and Riesz properties of pseudoeffect algebras and $po$-groups. J. Aust. Math. Soc. 75 (2003), 295-311.
DOI 10.1017/S1446788700008120 |
MR 2015319
[6] Georgescu, G., Iorgulescu, A.:
Pseudo $MV$-algebras: a noncommutative extension of $MV$-algebras. In: Proceedings of the Fourth International Symposium on Economic Informatics, Bucharest, 6-9 May, Romania (1999), 961-968.
MR 1730100 |
Zbl 0985.06007
[7] Georgescu, G., Iorgulescu, A.:
Pseudo $MV$-algebras. Mult.-Valued Log. 6 (2001), 95-135.
MR 1817439 |
Zbl 1014.06008
[9] Jakubík, J.:
Weak homogeneity of lattice ordered groups. Czechoslovak Math. J (to appear).
MR 2356285
[10] Jakubík, J.:
Direct product decompositions of pseudo effect algebras. Math. Slovaca 55 (2005), 379-398.
MR 2181779
[12] Sikorski, R.:
Boolean Algebras, 2nd edition. Springer Berlin (1964).
MR 0177920