[1] Hu, G., Wang, X., Yang, D.:
A new characterization for regular BMO with non-doubling measures. Proc. Edinburgh Math. Soc. 51 (2008), 155-170.
MR 2391636 |
Zbl 1138.42012
[2] Hu, G., Yang, D.:
Weighted norm inequalities for maximal singular integrals with non-doubling measures. Studia Math. 187 (2008), 101-123.
DOI 10.4064/sm187-2-1 |
MR 2413311
[3] John, F.:
Quasi-isometric mappings. 1965 Seminari 1962/63 Anal. Alg. Geom. e Topol., vol. 2, Ist. Naz. Alta Mat., 462-473, Ediz. Cremonese, Rome.
MR 0190905 |
Zbl 0263.46006
[12] Tolsa, X.:
Analytic capacity and Calderón-Zygmund theory with non doubling measures. Seminar of Mathematical Analysis, 239-271, {Colecc. Abierta}, {\it 71}, Univ. Sevilla Secr. Publ., Seville. (2004).
MR 2117070
[14] Tolsa, X.:
Painlevé's problem and analytic capacity. Collect. Math. Extra (2006), 89-125.
MR 2264206 |
Zbl 1105.30015
[16] Volberg, A.:
Calderón-Zygmund capacities and operators on nonhomogeneous spaces {CBMS Regional Conference Series in Mathematics}, {\it 100}, Amer. Math. Soc., Providence, RI. (2003).
MR 2019058