[2] Mises, R. V.:
Mathematical Theory of Probability and Statistics. Academic Press. New York (1964).
MR 0178486 |
Zbl 0132.12303
[3] Kolmogorov, A. N.:
On the logical foundation of probability theory. Lecture Notes in Mathematics. Springer-Verlag, New York, vol. 1021 (1982), 1-2.
MR 0735967
[4] Liu, W., Wang, Z.:
An extension of a theorem on gambling systems to arbitrary binary random variables. Statistics and Probability Letters, vol. 28 (1996), 51-58.
DOI 10.1016/0167-7152(95)00081-X |
MR 1394418
[5] Wang, Z.:
A strong limit theorem on random selection for the N-valued random variables. Pure and Applied Mathematics (1999), 15 56-61.
MR 1762684
[6] Liu, W., Yang, W.:
An extension of Shannon-McMillan theorem and some limit properties for nonhomogeneous Markov chains. Stochastic Process. Appl. (1996), 61 279-292.
MR 1378852 |
Zbl 0861.60042
[7] Stromberg, K. R., Hewitt, E.:
Real and abstract analysis-a modern treament of the theory of functions of real variable. (1994), Springer, New York.
MR 0367121
[11] Barron, A. R.:
The strong ergodic theorem of densities; Generalized Shannon-McMillan- Breiman theorem. Ann. Probab. (1985), 13 1292-1303.
MR 0806226
[13] Feinstein, A.:
A new basic theory of information. IRE Trans. P.G.I.T. (1954), 2-22.
MR 0088413
[14] Yang, W., Liu, W.:
Strong law of large numbers and Shannon-McMillan theorem for Markov fields on trees. IEEE Trans. Inform. Theory (2002), 48 313-318.
DOI 10.1109/18.971762 |
MR 1872187
[15] Wang, Z., Yang, W.:
Some strong limit theorems for both nonhomogeneous Markov chains of order two and their random transforms. J. Sys. Sci. and Math. Sci (2004), 24 451-462.
MR 2108149
[16] Wang, K., Yang, W.:
Research on strong limit theorem for Cantor-like stochastic sequence of Science and Technology (in Chinese). J. Jiangsu Univ. Sci-tech. Nat. Sci. (2006), 20 26-29.
MR 2280994
[17] Wang, K.: Strong large number law for Markov chains field on arbitrary Cayley tree (in Chinese). J. Jiangsu Univ. Sci-tech. Nat. Sci. (2006), 20 28-32.
[18] Wang, K.:
Some research on strong limit theorems for Cantor-like nonhomogeneous Markov chains (in Chinese). J. Jiangsu Univ. Sci-tech. Nat. Sci. (2006), 20 19-23.
MR 2340787
[19] Wang, K., Qin, Z.:
A class of strong limit theorems for arbitrary stochastic sequence in random selection system (in Chinese). J. Jiangsu Univ. Sci-tech. Nat. Sci. (2006), 20 40-44.
MR 2280994
[20] Wang, K.:
A class of strong limit theorems for stochastic sequence on product distribution in gambling system (in Chinese). J. Jiangsu Univ. Sci-tech. Nat. Sci. (2007), 21 33-36.
MR 2524925
[21] Wang, K., Ye, H.: A class of strong limit theorems for Markov chains field on arbitrary Bethe tree (in Chinese). J. Jiangsu Univ. Sci-tech. Nat. Sci. (2007), 21 37-40.
[22] Wang, K.:
A class of strong limit theorems for random sum of Three-order countable nonhomogeneous Markov chains (in Chinese). J. Jiangsu Univ. Sci-tech. Nat. Sci. (2007), 21 42-45.
MR 1437763
[23] Wang, K., Ye, H.: A class of local strong limit theorems for random sum of Cantor-like random function sequences (in Chinese). J. Jiangsu Univ. Sci-tech. Nat. Sci. (2008), 22 87-90.
[24] Wang, K.:
A class of strong limit theorems on generalized gambling system for arbitrary continuous random variable sequence (in Chinese). J. Jiangsu Univ. Sci-tech. Nat. Sci. (2008), 22 86-90.
MR 2445619
[25] Li, M.: Some limit properties for the sequence of arbitrary random variables on their generalized random selection system (in Chinese). J. Jiangsu Univ. Sci-tech. Nat. Sci. (2008), 22 90-94.