Previous |  Up |  Next

Article

Keywords:
digraphs; Chinese remainder theorem; Carmichael $\lambda $-function; group theory
Summary:
The paper extends the results given by M. Křížek and L. Somer, {\it On a connection of number theory with graph theory}, Czech. Math. J. 54 (129) (2004), 465--485 (see [5]). For each positive integer $n$ define a digraph $\Gamma (n)$ whose set of vertices is the set $H=\{0,1,\dots ,n - 1\}$ and for which there is a directed edge from $a\in H$ to $b\in H$ if $a^3\equiv b\pmod n.$ The properties of such digraphs are considered. The necessary and the sufficient condition for the symmetry of a digraph $\Gamma (n)$ is proved. The formula for the number of fixed points of $\Gamma (n)$ is established. Moreover, some connection of the length of cycles with the Carmichael $\lambda $-function is presented.
References:
[1] Bryant, S.: Groups, graphs and Fermat's last theorem. Amer. Math. Monthly 74 (1967), 152-156. DOI 10.2307/2315605 | MR 0207824 | Zbl 0163.02605
[2] Carmichael, R. D.: Note on a new number theory function. Bull. Amer. Math. Soc. 16 (1910), 232-238 \JFM 41.0226.04. DOI 10.1090/S0002-9904-1910-01892-9 | MR 1558896
[3] Chassé, G.: Combinatorial cycles of a polynomial map over a commutative field. Discrete Math. 61 (1986), 21-26. DOI 10.1016/0012-365X(86)90024-5 | MR 0850926
[4] Harary, F.: Graph Theory. Addison-Wesley Publ. Company, London (1969). MR 0256911 | Zbl 0196.27202
[5] Křížek, M., Somer, L.: On a connection of number theory with graph theory. Czech. Math. J. 54 (2004), 465-485. DOI 10.1023/B:CMAJ.0000042385.93571.58 | MR 2059267
[6] Křížek, M., Luca, F., Somer, L.: 17 Lectures on the Fermat Numbers. From Number Theory to Geometry. Springer-Verlag, New York (2001). MR 1866957
[7] Rogers, T. D.: The graph of the square mapping on the prime fields. Discrete Math. 148 (1996), 317-324. DOI 10.1016/0012-365X(94)00250-M | MR 1368298 | Zbl 0843.05048
[8] Sierpiński, W.: Elementary Theory of Numbers. North-Holland (1988). MR 0930670
[9] Szalay, L.: A discrete iteration in number theory. BDTF Tud. Közl. 8 (1992), 71-91 Hungarian. Zbl 0801.11011
Partner of
EuDML logo