Previous |  Up |  Next

Article

Keywords:
graceful; edge-graceful; super edge-graceful; super vertex-graceful; amalgamation; trees; unicyclic graphs
Summary:
A graph $G$ with $p$ vertices and $q$ edges, vertex set $V(G)$ and edge set $E(G)$, is said to be super vertex-graceful (in short SVG), if there exists a function pair $(f, f^+)$ where $f$ is a bijection from $V(G)$ onto $P$, $f^+$ is a bijection from $E(G)$ onto $Q$, $f^+((u, v)) = f(u) + f(v)$ for any $(u, v) \in E(G)$, $$ Q = \begin{cases} \{\pm 1,\dots , \pm \frac 12q\},&\text {if $q$ is even,}\\ \{0, \pm 1, \dots , \pm \frac 12(q-1)\},&\text {if $q$ is odd,} \end{cases} $$ and $$ P = \begin{cases} \{\pm 1,\dots , \pm \frac 12p\},&\text {if $p$ is even,}\\ \{0, \pm 1, \dots , \pm \frac 12(p-1)\},&\text {if $p$ is odd.} \end{cases} $$ \endgraf We determine here families of unicyclic graphs that are super vertex-graceful.
References:
[1] Cabannis, S., Mitchem, J., Low, R.: On edge-graceful regular graphs and trees. Ars Combin. 34 (1992), 129-142. MR 1206556
[2] Gallian, J. A.: A dynamic survey of graph labeling. Electronic J. Combin. (2001), 6 1-144. MR 1668059
[3] Keene, J., Simoson, A.: Balanced strands for asymmetric, edge-graceful spiders. Ars Combin. 42 (1996), 49-64. MR 1386927 | Zbl 0856.05087
[4] Kuan, Q., Lee, S.-M., Mitchem, J., Wang, A. K.: On edge-graceful unicyclic graphs. Congress. Numer. 61 (1988), 65-74. MR 0961638
[5] Lee, L. M., Lee, S.-M., Murty, G.: On edge-graceful labelings of complete graphs-solutions of Lo's conjecture. Congress. Numer. 62 (1988), 225-233. MR 0961686
[6] Lee, S.-M.: A conjecture on edge-graceful trees. Scientia, Ser. A 3 (1989), 45-57. MR 2309605 | Zbl 0741.05025
[7] Lee, S.-M.: New directions in the theory of edge-graceful graphs. Proceedings of the 6th Caribbean Conference on Combinatorics & Computing (1991), 216-231.
[8] Lee, S.-M.: On strongly indexable graphs and super vertex-graceful graphs, manuscript.
[9] Lee, S.-M., Leung, E.: On super vertex-graceful trees. Congress. Numer. 167 (2004), 3-26. MR 2122017 | Zbl 1062.05130
[10] Lee, S.-M., Ma, P., Valdes, L., Tong, S.-M.: On the edge-graceful grids. Congress. Numer. 154 (2002), 61-77. MR 1980029 | Zbl 1022.05074
[11] Lee, S.-M., Seah, E.: Edge-graceful labelings of regular complete $k$-partite graphs. Congress. Numer. 75 (1990), 41-50. MR 1069161 | Zbl 0727.05051
[12] Lee, S.-M., Seah, E.: On edge-gracefulness of the composition of step graphs with null graphs. Combinatorics, Algorithms, and Applications in Society for Industrial and Applied Mathematics (1991), 326-330. MR 1132915 | Zbl 0741.05060
[13] Lee, S.-M., Seah, E.: On the edge-graceful $(n, kn)$-multigraphs conjecture. J. Comb. Math. and Comb. Computing 9 (1991), 141-147. MR 1111847 | Zbl 0735.05072
[14] Lee, S.-M., Seah, E., Lo, S. P.: On edge-graceful 2-regular graphs. J. Comb. Math. and Comb. Computing 12 (1992), 109-117.
[15] Lee, S.-M., Seah, E., Tong, S.-M.: On the edge-magic and edge-graceful total graphs conjecture. Congress. Numer. 141 (1999), 37-48. MR 1745223 | Zbl 0970.05036
[16] Lee, S.-M., Seah, E., Wang, P. C.: On edge-gracefulness of the kth power graphs. Bull. Inst. Math. Academia Sinica 18 (1990), 1-11. MR 1072825 | Zbl 0699.05048
[17] Lo, S. P.: On edge-graceful labelings of graphs. Congress. Numer. 50 (1985), 231-241. MR 0833554 | Zbl 0597.05054
[18] Peng, J., Li, W.: Edge-gracefulness of $Cm \times Cn$. Proceedings of the Sixth Conference of Operations Research Society of China Hong Kong: Global-Link Publishing Company, Changsha (2000), 942-948.
[19] Mitchem, J., Simoson, A.: On edge-graceful and super-edge-graceful graphs. Ars Combin. 37 (1994), 97-111. MR 1282548 | Zbl 0805.05074
[20] Riskin, A., Wilson, S.: Edge graceful labellings of disjoint unions of cycles. Bulletin of the Institute of Combinatorics and its Applications 22 (1998), 53-58. MR 1489867 | Zbl 0894.05047
[21] Schaffer, K., Lee, S.-M.: Edge-graceful and edge-magic labelings of Cartesian products of graphs. Congress. Numer. 141 (1999), 119-134. MR 1745230 | Zbl 0968.05067
[22] Shiu, W. C., Lee, S.-M., Schaffer, K.: Some $k$-fold edge-graceful labelings of $(p,p-1)$-graphs. J. Comb. Math. and Comb. Computing 38 (2001), 81-95. MR 1853007 | Zbl 0977.05122
[23] Wilson, S., Riskin, A.: Edge-graceful labellings of odd cycles and their products. Bulletin of the ICA 24 (1998), 57-64. MR 1638978 | Zbl 0913.05084
Partner of
EuDML logo