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ON THE GENERALIZED GAMBLING SYSTEM
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Abstract. In this paper, we study the limit properties of countable nonhomogeneous
Markov chains in the generalized gambling system by means of constructing compatible
distributions and martingales. By allowing random selection functions to take values in ar-
bitrary intervals, the concept of random selection is generalized. As corollaries, some strong
limit theorems and the asymptotic equipartition property (AEP) theorems for countable
nonhomogeneous Markov chains in the generalized gambling system are established. Some
results obtained are extended.
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1. Introduction

Consider a sequence of Bernoulli trials and suppose that at each trial the bettor has

the free choice of whether or not to bet. A theorem on gambling system asserts that

under any non-anticipative system the successive bets form a sequence of Bernoulli

trials with unchanged probability for success. The importance of this statement was

recognized by von Mises, who introduced the impossibility of a successful gambling

system as a fundamental axiom (see [1], [2]). This topic was discussed still further by

Kolmogrov (see [3]) and Liu and Wang (see [4] and [5]). Yang and Liu (see [14]) and

Wang (see [15]) have studied the limit properties for Markov chains on the tree and

on the random transform, respectively. Wang and Li (see[16-25]) have studied the

strong limit theorems for nonhomogeneous Markov chains and Markov chains field

on trees and gambling systems. On the basis of [3-7] and [15] we studied strong limit

theorems for nonhomogeneous Markov chains on the generalized gambling system.
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The purpose of this paper is to extend the discussion to the case of strong limit the-

orem for countable nonhomogeneous Markov chains by using the martingale method

and constructing compatible distribution. By allowing random selection functions

to take values in arbitrary intervals, the concept of random selection is generalized.

As corollaries, the results of Liu and Yang (see [6]) are extended.

Let {Xn, n > 0} be a stochastic sequence defined on a probability space (Ω, F , P )

which takes values in S = {s1, s2, . . .}. The joint distribution is

(1) P (X0 = x0, . . . , Xn = xn) = p(x0, . . . , xn) > 0, xi ∈ S, 0 6 i 6 n.

Let {Xn, n > 0} be a nonhomogeneous Markov chain. The initial distribution and

the transition matrix are respectively:

(2) (p(s1), p(s2) . . .), p(i) > 0, i ∈ S

and

(3) Pn = (pn(i, j)), pn(i, j) > 0, i, j ∈ S, n > 1,

where pn(i, j) = P (Xn = j|Xn−1 = i) (n > 1). Then

(4) p(x0, . . . , xn) = p(x0)

n
∏

k=1

pk(xk−1, xk).

In order to extend the concept of random selection, which is the crucial part of the

gambling system, we first give a set of real-valued functions fn(x1, . . . , xn) defined

on Sn(n = 1, 2, . . .), which will be called the A-valued selection function if they take

values in a set A of real numbers. Then let

Y1 = y (y is an arbitrary real number),(5)

Yn+1 = fn(X1, . . . , Xn), n > 1,

where {Yn, n > 1} will be called a generalized gambling system (the generalized

random selection system). Let δi(j) be the Kronecker delta function on S, that is

for i, j ∈ S

δi(j) =

{

0, i 6= j,

1, i = j.

In order to explain the real meaning of the extended notion of the random se-

lection, we consider the following gambling model. Let {Xn, n > 0} be a nonho-

mogeneous Markov chain with the initial distribution (2) and the transition matrix
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(3), and {gn(x, y), n > 1} be a real-valued function sequence defined on S2. Inter-

pret Xn as the result of the nth trial, the type of which may change at each step.

Let µn = Yngn(Xn−1, Xn) denote the gain of the bettor at the nth trial, where

Yn represents the bet size, gn(Xn−1, Xn) is determined by the gambling rules, and

{Yn, n > 0} is called a generalized gambling system or a generalized random selection

system. The bettor’s strategy is to determine {Yn, n > 1} by the results of the last

trial. Let the entrance fee that the bettor pays at the nth trial be bn. Also suppose

that bn depends on Xn−1 as n > 1, and b1 is a constant. Thus
n
∑

k=1

Ykgk(Xk−1, Xk)

represents the total gain in the first n trials,
n
∑

k=1

bk the accumulated entrance fees,

and
n
∑

k=1

[Ykgk(Xk−1, Xk) − bk] the accumulated net gain. Motivated by the classi-

cal definition of “fairness” of game of chance (see [3]), we introduce the following

definition:

Definition. The game is said to be fair, if for almost all ω ∈
{

ω :
∞
∑

k=1

Yk = ∞
}

,

the accumulated net gain in the first n trials is of smaller order of magnitude than

the accumulated stake
n
∑

k=1

Yk as n tends to infinity, that is

lim
n→∞

1
∑n

k=1 Yk

n
∑

k=1

[Ykgk(Xk−1, Xk) − bk] = 0 a.s. on

{

ω :

∞
∑

k=1

Yk = ∞

}

We can obtain the following conclusion.

2. Main results and its proof

Theorem 1. Let {Xn, n > 0} be a nonhomogeneous Markov chain with the

initial distribution (2) and the transition matrix (3) and {Yn, n > 1} be defined

as before. Let {σn, n > 1} be an arbitrary nonnegative stochastic aequence. Let

{gn(x, y), n > 1} be a real-valued function sequence defined on S2 and let α > 0 be

a constant. Let

(6) D =

{

ω : lim
n→∞

σn = ∞,

lim sup
n→∞

1

σn

n
∑

k=1

E[exp{α |Ykgk(Xk−1, Xk)|}|Xk−1] < ∞

}

.

Then

(7) lim
n→∞

1

σn

n
∑

k=1

Yk{gk(Xk−1, Xk) − E(gk(Xk−1, Xk)|Xk−1)} = 0 a.s. ω ∈ D
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P r o o f. Let

(8) Dx0...xn
= {ω : Xk = xk, 0 6 k 6 n}, xk ∈ S, 1 6 k 6 n.

Then

P (Dx0...xn
) = p(x0, . . . , xn)

and

(9) P (Dx0...xn
) = p(x0, . . . , xn) = p(x0)

n
∏

k=1

pk(xk−1, xk), n > 1.

Dx0...xn
is called an nth-order elementary cylinder. Let Nn be the collection of nth-

order elementary cylinders, N the collection consisting of ∅, Ω and all cylinder sets

and let |λ| 6 α. Define a set function µ on N as follows:

µ(∅) = 0, µ(Ω) = 1,(10)

µ(Dx0...xn
) = p(x0)

n
∏

k=1

exp{λykg(xk−1, xk)}pk(xk−1, xk)

E[exp{λykg(Xk−1, Xk)}|Xk−1 = xk−1]
,

where y1 is an arbitrary real number, and

(11) yk = fk−1(x0, . . . , xk−1), k > 1.

We have by (10)

(12)
∑

xn∈S

µ(Dx0...xn
) =

∑

xn∈S

µ(Dx0...xn−1
)

exp{λyng(xn−1, xn)}pn(xn−1, xn)

E[exp{λyng(Xn−1, Xn)}|Xn−1 = xn−1]

= µ(Dx0...xn−1
)

∑

xn∈S exp{λyng(xn−1, xn)}pn(xn−1, xn)

E[exp{λyng(Xn−1, Xn)}|Xn−1 = xn−1]

= µ(Dx0...xn−1
)
E[exp{λyng(Xn−1, Xn)}|Xn−1 = xn−1]

E[exp{λyng(Xn−1, Xn)}|Xn−1 = xn−1]

= µ(Dx0...xn−1
).

It follows from (10)–(12) that µ is a measure on N. Since N is semialgebra, µ has a

unique extension to the σ-field σ(N). Let

(13) Tn(λ, ω) =
∑

D∈Nn

µ(Dx0...xn
)

P (Dx0...xn
)

IDx0...xn
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where IDx0...xn
denotes the indicator function of Dx0...xn

, that is

(14) Tn(λ, ω) =
µ(DX0(ω)...Xn(ω))

P (DX0(ω)...Xn(ω))
.

It is easy to see that {Nn, n > 0} is a net relative to (Ω, A, P ), where A denotes the

σ-algebra of events on which P is defined. By the differentiation on a net of Hewitt

and Stromberg (see [7], p. 373), there exists A(λ) ∈ σ(N) with P (A(λ)) = 1 such

that

lim
n

Tn(λ, ω) = T∞(λ, ω) < ∞ ω ∈ A(λ)

that is

(15) lim
n

Tn(λ, ω) = T∞(λ, ω) < ∞ a.s.

By (6) and (15) we have

(16) lim sup
n→∞

1

σn

log Tn(λ, ω) 6 0 a.s. ω ∈ D.

By (9), (10), (13) and (14), we have

(17) log Tn(λ; ω) =

n
∑

k=1

λYkgk(Xk−1, Xk) −
n

∑

k=1

log E[exp{λYkgk(Xk−1, Xk)|Xk−1].

By (16) and (17) we have

(18) lim sup
n→∞

1

σn

{ n
∑

k=1

λYkgk(Xk−1, Xk)

−
n

∑

k=1

log E[exp{λYkgk(Xk−1, Xk)|Xk−1]

}

6 0 a.s. ω ∈ D.

By virtue of the property of limeas superior:

lim sup
n→∞

(an − bn) 6 d ⇒ lim sup
n→∞

(an − cn) 6 lim sup
n→∞

(bn − cn) + d,

and the inequalities log x 6 x − 1 (x > 0), ex − 1 − x 6 1
2x2e|x|, noticing

max{x2e−hx, x > 0} = 4e−2/h2 (h > 0),
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and letting 0 6 |λ| < α, we have by (18)

lim sup
n→∞

1

σn

n
∑

k=1

λYk{gk(Xk−1, Xk) − E(gk(Xk−1, Xk)|Xk−1)}(19)

6 lim sup
n→∞

1

σn

n
∑

k=1

{log E[exp{λYkgk(Xk−1, Xk)}|Xk−1]

− λYkE(gk(Xk−1, Xk)|Xk−1)}

6 lim sup
n→∞

1

σn

n
∑

k=1

{E[exp{λYkgk(Xk−1, Xk)}|Xk−1] − 1

− λYkE(gk(Xk−1, Xk)|Xk−1)}

6
1

2
lim sup

n→∞

1

σn

n
∑

k=1

(λYk)2E{[gk(Xk−1, Xk)]2e|λYkgk(Xk−1,Xk)||Xk−1}

6
1

2
(λYk)2 lim sup

n→∞

1

σn

n
∑

k=1

E{[gk(Xk−1, Xk)]2e|λYk|·|gk(Xk−1,Xk)||Xk−1}

=
1

2
(λYk)2 lim sup

n→∞

1

σn

n
∑

k=1

E{gk(Xk−1, Xk)2e(|λ|−α)|Ykgk(Xk−1,Xk)|

× eα|Ykgk(Xk−1,Xk)||Xk−1}

6
1

2
(λYk)2 lim sup

n→∞

1

σn

n
∑

k=1

E{eα|Ykgk(Xk−1,Xk)|

× 4e−2/(Yk · (|λ| − α))2|Xk−1} a.s. ω ∈ D.

When 0 < λ < α, we have by (6) and (19)

lim sup
n→∞

1

σn

n
∑

k=1

Yk{gk(Xk−1, Xk) − E(gk(Xk−1, Xk)|Xk−1)}(20)

6
1

2
λ · lim sup

n→∞

1

σn

n
∑

k=1

E{eα|Ykg(Xk−1,Xk)|4e−2/(λ − α)2|Xk−1} a.s. ω ∈ D.

Choose 0 < λi < α, i = 1, 2, . . . such that λi → 0 (as i → ∞). Therefore, for all i,

we have by (20)

(21) lim sup
n→∞

1

σn

n
∑

k=1

Yk{gk(Xk−1, Xk) − E(gk(Xk−1, Xk)|Xk−1)} 6 0 a.s. ω ∈ D
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When −α < λ < 0, we have by (6) and (19)

lim inf
n→∞

1

σn

n
∑

k=1

Yk{gk(Xk−1, Xk) − E(gk(Xk−1, Xk)|Xk−1)}(22)

>
1

2
λ · lim sup

n→∞

1

σn

n
∑

k=1

E{eα|Ykg(Xk−1,Xk)|4e−2/(λ + α)2|Xk−1} a.s. ω ∈ D.

Choose −α < λi < 0, i = 1, 2, . . . such that λi → 0 (as i → ∞). Therefore, for all i,

we have by (22)

(23) lim inf
n→∞

1

σn

n
∑

k=1

Yk{gk(Xk−1, Xk) − E(gk(Xk−1, Xk)|Xk−1)} > 0 a.s. ω ∈ D.

Therefore (7) follows from (21) and (23). �

Corollary 1 (see [2]). Let {Xn, n > 0} be a nonhomogeneous Markov chain with

the initial distribution (2) and the transition matrix (3) and let {Yn, n > 1} and

{gn(x, y), n > 1} be defined as before. Let

(24) D0 =

{

ω : lim
n→∞

n
∑

k=1

E[exp{α|Ykgk(Xk−1, Xk)|}|Xk−1] = ∞

}

.

where α > 0 is a constant. Then

(25) lim
n→∞

n
∑

k=1

Yk{gk(Xk−1, Xk) − E(gk(Xk−1, Xk)|Xk−1)}

n
∑

k=1

E[exp{α|Ykgk(Xk−1, Xk)|}|Xk−1]
= 0 a.s. ω ∈ D0.

P r o o f. Let

σn =

n
∑

k=1

E[exp{α|Ykgk(Xk−1, Xk)|}|Xk−1], n > 1.

Then

(26) lim sup
n→∞

1

σn

n
∑

k=1

E[exp{α|Ykgk(Xk−1, Xk)|}|Xk−1] 6 1.

It can be known that D = D0 from (24) and (26). Therefore (25) follows from (7).
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Corollary 2. Let {Xn, n > 0} be a nonhomogeneousMarkov chain with the initial

distribution (2) and the transition matrix (3) and let {σn, n > 1} and {gn(x, y),

n > 1} be defined as before, where α > 0 is a constant. Let

(27) D2 =

{

ω : lim
n→∞

σn = ∞,

lim sup
n→∞

1

σn

n
∑

k=1

E[exp{α|gk(Xk−1, Xk)|}|Xk−1] < ∞

}

.

Then

(28) lim
n→∞

1

σn

n
∑

k=1

{gk(Xk−1, Xk) − E(gk(Xk−1, Xk)|Xk−1)} = 0 a.s. ω ∈ D2.

P r o o f. Let Yk ≡ 1 in Theorem 1. It is easy to see that D2 = D then. Thus

(28) can follow from (7). �

Remark. It can be seen that the condition (27) weakens the condition of Theo-

rem 1 in the paper of Liu and Yang (see [6]):

lim sup
n→∞

1

σn

n
∑

k=1

E[g2
k(Xk−1, Xk)eα|gk(Xk−1,Xk)||Xk−1] < ∞.

Correspondingly the conclusion is strengthened.

3. The generalization for AEP theorems for nonhomogeneous

Markov chains in the generalized gambling system

Let {Xn, n > 0} be an arbitrary stochastic sequence defined on the probability

space (Ω, F , P ) which takes values in S0 = {s1, s2, . . . , sN}. The joint distribution

is defined as in (1). Let

(29) fn(ω) = −
1

n
log p(X0, . . . , Xn).

fn(ω) is called as the relative entropy density of {Xn, n > 0}. If {Xn, n > 0} is the

nonhomogeneous Markov chain with the initial distribution (2) and the transition

matrix (3), then by virtue of (4) and (29) we have

(30) fn(ω) = −
1

n

[

log p(X0) +
n

∑

k=1

log pk(Xk−1, Xk)

]

.
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The limit property of the relative entropy density is an important problem in informa-

tion theory. Shannon (see [8]) first showed that for stationary ergodic Markov chains

fn(ω) converges in probability to a constant. McMillan (see [9]) and Breiman (see

[10]) proved, respectively, that if {Xn, n > 0} is stationary and ergodic, then fn(ω)

converges in L1 and almost everywhere to a constant. This is the famous Shannon-

McMillan theorem. The extension of the Shannon-McMillan theorem to the general

stochastic process can be found, for example, in Barron (see [11]), Chung (see [12])

and FeinStein (see [13]). In this paper we mainly study the some limit properties and

asymptotic equipartition property (AEP) theorems for countable nonhomogeneous

Markov chains in the generalized gambling system.

Corollary 3 (see [3]). Let {Xn, n > 0} be a nonhomogeneous Markov chain with

the initial distribution (2) and the transition matrix (3), and let fn(ω) be the relative

entropy density defined as in (30). Then

(31) lim
n→∞

{

fn(ω) −
1

n

n
∑

k=1

∑

j∈S0

pk(Xk−1, j) log pk(Xk−1, j)

}

= 0 a.s.

P r o o f. Let gk(i, j) = − log pk(i, j), Yk ≡ 1, σn = n and α = 1 in Theorem 1.

Then

(32) lim sup
n→∞

1

σn

n
∑

k=1

E[exp{α|Ykgk(Xk−1, Xk)|}|Xk−1]

6 lim sup
n→∞

1

n

n
∑

k=1

E[exp{| − log pk(Xk−1, Xk)|}|Xk−1]

= lim sup
n→∞

1

n

n
∑

k=1

∑

j∈S0

pk(Xk−1, j)

pk(Xk−1, j)
6 N.

It can be shown that D = Ω from σn = n and (32). Therefore (31) follows from (7),

(30) and the assumption conditions above.

Remark. The corollary is just the result of Theorem 2 in the paper of Liu

and Yang (1996). We consider the problem of the generalized random selection

for a arbitrary stochastic sequence. We choose a subsequence of X0, X1, . . . ,

Xn, . . . and (X0, X1), (X1, X2), . . . , (Xn−1, Xn), . . . (where (X0, X1), (X1, X2), . . . ,

(Xn−1, Xn), . . . are the ordered couples of random variables {Xn, n > 0}) ac-

cording to the value Yn takes. We select Xn and (Xn−1, Xn) if and only if

Yn ∈ [−m, 0)∪ (0, m]. Therefore we obtain a subsequence of the above sequence. We

let for i, j ∈ S0, Sn(i; ω) be the number of the states i in the sequenceX1, X2, . . . , Xn,
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which are selected by {Yk, 1 6 k 6 n}; Sn(i, j; ω) be the number of the ordered

couples (i, j) in the ordered couples (X0, X1), (X1, X2), . . . , (Xn−1, Xn), which are

selected by {Yk, 1 6 k 6 n}. That is Sn(i; ω) =
n
∑

k=1

Ykδi(Xk), Sn(i, j; ω) =

n
∑

k=1

Ykδi(Xk−1)δj(Xk), where δi(j) is defined as before. Then we can conclude the

following results.

Corollary 4. Let {Xn, n > 0} be a nonhomogeneous Markov chain with the

initial distribution (2) and the transition matrix (3) and let {σn, n > 1}, Sn(i; ω)

and Sn(i, j; ω) be defined as before. |Yn| 6 m, n > 1. assume that

(33) lim sup
n→∞

n

σn

6 M a.s.

Then

lim
n→∞

1

σn

{

Sn(i; ω) −
n

∑

k=1

Ykpk(Xk−1, i)

}

= 0 a.s.,(34)

lim
n→∞

1

σn

{

Sn(i, j; ω) −
n

∑

k=1

Ykδi(Xk−1)pk(i, j)

}

= 0 a.s.(35)

P r o o f. Letting gk(Xk−1, Xk) = δi(Xk), k > 1, then

(36)

n
∑

k=1

Yk{gk(Xk−1, Xk) − E(gk(Xk−1, Xk)|Xk−1)}

=

n
∑

k=1

Yk{δi(Xk) − E(δi(Xk)|Xk−1)} = Sn(i; ω) −
n

∑

k=1

Ykpk(Xk−1, i).

Noticing that |Yn| 6 m, n > 1. We have by (33) that

(37) lim sup
n→∞

1

σn

n
∑

k=1

E[exp{α|Ykgk(Xk−1, Xk)|}|Xk−1]

6 lim sup
n→∞

1

σn

n
∑

k=1

E[emα|Xk−1] 6 lim sup
n→∞

emα n

σn

6 Meαm a.s.

It is also easy to see from (33) that lim
n→∞

σn = ∞. Therefore D = Ω. It is easy to see

from (7) and (36) that (34) holds. Similarly, let gk(Xk−1, Xk) = δi(Xk−1)δj(Xk),
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k > 1. Noticing that

(38)
n

∑

k=1

Yk{gk(Xk−1, Xk) − E(gk(Xk−1, Xk)|Xk−1)}

=

n
∑

k=1

Yk{δi(Xk−1)δj(Xk) − E(δi(Xk−1)δj(Xk)|Xk−1)}

= Sn(i, j; ω) −
n

∑

k=1

Ykδi(Xk−1)pk(Xk−1, j),

it can also be seen that (37) holds. Therefore, D = Ω holds too. (35) follows from

(7) and (38). �

Theorem 2. Let {Xn, n > 0} be a nonhomogeneous Markov chain with the

initial distribution (41) and the transition matrix (42). Let Sn(i; ω) and Sn(i, j; ω)

be defined as before. Let σn =
n
∑

k=1

Yk, where Yk is defined as in Corollary 4. Let

P = (p(i, j)) be another transition matrix and be ergodic. {g(x, y)} be a real-valued

function defined on S2
0 . If

(39) lim
n→∞

1

σn

n
∑

k=1

|Ykpk(i, j) − Yk−1p(i, j)| = 0 for all i, j ∈ S0,

Then

lim
n→∞

1

σn

Sn(i; ω) = πi a.s.,(40)

lim
n→∞

1

σn

Sn(i, j; ω) = πip(i, j) a.s.,(41)

lim
n→∞

1

σn

n
∑

k=1

Ykg(Xk−1, Xk) =
∑

i∈S0

∑

j∈S0

πig(i, j)p(i, j) a.s.,(42)

where (πs1
, πs2

, . . . , πsN
) is the unique stationary distribution determined by P .

P r o o f. (1) We have by (34) in Corollary 4,

(43) lim
n→∞

1

σn

{

Sn(j; ω) −
n

∑

k=1

Ykpk(Xk−1, j)

}

= 0 a.s.

Since

(44)

n
∑

k=1

Ykpk(Xk−1, j) =

n
∑

k=1

∑

i∈S0

Ykδi(Xk−1)pk(i, j),
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by (39) and the definition of σn in Corollary 4, we have

(45) lim
n→∞

1

σn

∣

∣

∣

∣

n
∑

k=1

∑

i∈S0

δi(Xk−1)(Ykpk(i, j) − Yk−1p(i, j))

∣

∣

∣

∣

6
∑

i∈S0

lim
n→∞

1

σn

∣

∣

∣

∣

n
∑

k=1

(Ykpk(i, j) − Yk−1p(i, j))

∣

∣

∣

∣

6
∑

i∈S0

lim
n→∞

1

σn

n
∑

k=1

|Ykpk(i, j) − Yk−1p(i, j)|.

By (43), (44), (45) and the definition of Sn(i; ω) we have

(46) lim
n→∞

1

σn

{

Sn(j; ω) −
∑

i∈S0

Sn(i; ω)p(i, j)

}

= lim
n→∞

1

σn

n
∑

k=1

∑

i∈S0

δi(Xk−1)(Ykpk(i, j) − Yk−1p(i, j)) = 0 a.s.

Multiplying (46) by p(j, l), adding them together for j ∈ S0 and using (46) once

again, we have

(47) 0 =
∑

j∈S0

p(j, l) lim
n→∞

1

σn

{

Sn(j; ω) −
∑

i∈S0

Sn(i; ω)p(i, j)

}

= lim
n→∞

1

σn

{

∑

j∈S0

Sn(j; ω)p(j, l) − Sn(l; ω)

}

+ lim
n→∞

1

σn

{

Sn(l; ω) −
∑

i∈S0

∑

j∈S0

Sn(i; ω)p(i, j)p(j, l)

}

= lim
n→∞

1

σn

{

Sn(l; ω) −
∑

i∈S0

Sn(i; ω)p(2)(i, l)

}

a.s.,

where p(k)(i, l) (k is an integer) is the k-step transition probability of P . By induc-

tion, we have

(48) lim
n→∞

1

σn

{

Sn(l; ω) −
∑

i∈S0

Sn(i; ω)p(k)(i, l)

}

= 0 a.s.

By (48) we have

(49) lim
n→∞

1

σn

{

Sn(l; ω) −
∑

i∈S0

Sn(i; ω)
1

N

N
∑

k=1

p(k)(i, l)

}

= 0 a.s.
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Since

(50) lim
N→∞

1

N

N
∑

k=1

p(k)(i, l) = πl

and

(51)
1

σn

∑

i∈S0

Sn(i; ω) =

n
∑

k=1

∑

i∈S0

Ykδi(Xk)
/

n
∑

k=1

Yk = 1,

it is easy to see from (49)–(51) that (40) holds .

(2) By (35) in Corollary 4, we have

(52) lim
n→∞

1

σn

{

Sn(i, j; ω) −
n

∑

k=1

Ykδi(Xk−1)pk(i, j)

}

= 0 a.s.

It is easy to show by (39) and (45)

(53) lim
n→∞

1

σn

n
∑

k=1

δi(Xk−1)(Ykpk(i, j) − Yk−1p(i, j)) = 0.

By (52), (53) and the definition of Sn(i; ω) we have

(54) lim
n→∞

1

σn

{Sn(i, j; ω) − Sn(i; ω)p(i, j)}

= lim
n→∞

1

σn

n
∑

k=1

δi(Xk−1)(Ykpk(i, j) − Yk−1p(i, j)) = 0 a.s.

It can be seen from (40) and (54) that (41) holds.

(3) Since

(55)

1

σn

n
∑

k=1

Ykg(Xk−1, Xk) =
1

σn

n
∑

k=1

∑

i∈S0

∑

j∈S0

Ykδi(Xk−1)δj(Xk)g(i, j)

=
∑

i∈S0

∑

j∈S0

g(i, j)
1

σn

Sn(i, j; ω),

(42) follows from (41) and (55). �
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Corollary 5. Let {Xn, n > 0} be a nonhomogeneous Markov chain with the

initial distribution (2) and the transition matrix (3) and fn(ω) be the relative entropy

density defined as in (30). Let P = (p(i, j)) be defined as in Theorem 2. If (39) holds,

then

(56) lim
n→∞

fn(ω) = −
∑

i∈S0

πi

∑

j∈S0

p(i, j) log p(i, j) a.s.

P r o o f. Let Yn ≡ 1, g(x, y) = − log p(x, y) in Theorem 2, then σn = n.

Moreover,

(57) lim sup
n→∞

( n

σn

)

= lim sup
n→∞

n

n
6 1 a.s.

From (42) in Theorem 2 it follows immediately that (56) holds.
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