Previous |  Up |  Next

Article

Keywords:
universality; effectivity; Riemann zeta-function; Dirichlet series
Summary:
We prove explicit upper bounds for the density of universality for Dirichlet series. This complements previous results [15]. Further, we discuss the same topic in the context of discrete universality. As an application we sharpen and generalize an estimate of Reich concerning small values of Dirichlet series on arithmetic progressions in the particular case of the Riemann zeta-function.
References:
[1] Bagchi B.: The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series. Ph.D. thesis, Calcutta, Indian Statistical Institute, 1981
[2] Bohr H., Jessen B.: Über die Werteverteilung der Riemannschen Zetafunktion II. Acta Math. 58 (1932), 1-55 DOI 10.1007/BF02547773 | MR 1555343 | Zbl 0003.38901
[3] Garunkštis R.: The effective universality theorem for the Riemann zeta-function. in: ‘Special activity in Analytic Number Theory and Diophantine equations’, Proceedings of a workshop at the Max Planck-Institut Bonn 2002, R.B. Heath-Brown and B. Moroz (eds.), Bonner math. Schriften 360 (2003) MR 2072675
[4] Gonek S.M.: Analytic properties of zeta and L-functions. Ph.D. thesis, University of Michigan, 1979 MR 2628587
[5] Lapidus M.L., Frankenhuijsen M. van: Fractal geometry and number theory. Birkhäuser 2000
[6] Laurinčikas A.: The universality of the Lerch zeta-functions. Liet. mat. rink. 37 (1997), 367-375 (in Russian); Lith. Math. J. 37 (1997), 275-280 MR 1481388
[7] Laurinčikas A.: The universality of zeta-functions. in “Proceedings of the Eighth Vilnius Conference on Probability Theory and Mathematical Statistics, Part I”, Acta Appl. Math. 78 (2003), 251-271 DOI 10.1023/A:1025797802722 | MR 2024030
[8] Levinson N., Montgomery H.L.: Zeros of the derivative of the Riemann zeta-function. Acta Math. 133 (1974), 49-65 DOI 10.1007/BF02392141 | MR 0417074
[9] Matsumoto K.: Probabilistic value-distribution theory of zeta-functions. Sugaku 53 (2001), 279-296 (in Japanese); engl. translation in Sugaku Expositions 17 (2004), 51-71 MR 1850006
[10] Putnam C.R.: On the non-periodicity of the zeros of the Riemann zeta-function. Amer. J. Math. 76 (1954), 97-99 DOI 10.2307/2372402 | MR 0058703 | Zbl 0055.06904
[11] Putnam C.R.: Remarks on periodic sequences and the Riemann zeta-function. Amer. J. Math. 76 (1954) MR 0064865
[12] Reich A.: Universelle Wertverteilung von Eulerprodukten. Nach. Akad. Wiss. Göttingen, Math.-Phys. Kl. (1977), 1-17 MR 0567687
[13] Reich A.: Wertverteilung von Zetafunktionen. Arch. Math. 34 (1980), 440-451 MR 0593771
[14] Reich A.: Dirichletreihen und gleichverteilte Folgen. Analysis 1 (1981), 303-312 DOI 10.1524/anly.1981.1.4.303 | MR 0727881 | Zbl 0496.10026
[15] Steuding J.: Upper bounds for the density of universality. Acta Arith. 107 (2003), 195-202 DOI 10.4064/aa107-2-6 | MR 1970823
[16] Steuding J.: Value-distribution of L-functions. Habilitation thesis, Frankfurt 2003, to appear in Lecture Notes of Mathematics, Springer MR 2025535 | Zbl 1130.11044
[17] Titchmarsh E.C.: The theory of the Riemann zeta-function. 2nd ed., revised by D.R. Heath-Brown, Oxford University Press 1986 MR 0882550 | Zbl 0601.10026
[18] Frankenhuijsen M. van: Arithmetic progressions of zeros of the Riemann zeta-function. J. Number Theor. 115 (2005), 360-370 DOI 10.1016/j.jnt.2005.01.002 | MR 2180508
[19] Voronin S.M.: Theorem on the ’universality’ of the Riemann zeta-function. Izv. Akad. Nauk SSSR, Ser. Matem. 39 (1975 (in Russian); engl. translation in Math. USSR Izv. 9 (1975), 443-445 MR 0472727 | Zbl 0333.30023
[20] Voronin S.M.: Analytic properties of Dirichlet generating functions of arithmetic objects. Ph.D. thesis, Moscow, Steklov Math. Institute, 1977 (in Russian)
Partner of
EuDML logo