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Upper bounds for the density of universality. II

Jörn Steuding

Abstract. We prove explicit upper bounds for the density of universality for
Dirichlet series. This complements previous results [15]. Further, we discuss
the same topic in the context of discrete universality. As an application we
sharpen and generalize an estimate of Reich concerning small values of Dirich-
let series on arithmetic progressions in the particular case of the Riemann
zeta-function.

1. Introduction: the effectivity problem in universality theorems
The Riemann zeta-function is one of the most-studied functions in mathematics;
however, it still does not reveal its mysteries and simplest questions concerning the
value-distribution are still open. For Re s > 1, the zeta-function is given by

ζ(s) =

∞∑

n=1

1

ns
=

∏

p prime

(
1 − 1

ps

)−1

,

and by analytic continuation elsewhere, except for a simple pole at s = 1. In
particular, the distribution of zeros of ζ(s) is of interest in number theory: the error
term in the prime number theorem is as small as possible if and only if the Riemann
hypothesis is true; i.e., ζ(s) does not vanish in the half-plane Re s > 1

2 . Here we are
concerned with an analytic property of the zeta-function which, however, is related
to zero-free regions as well.

In 1975, Voronin [19] proved his remarkable universality theorem which roughly
states that any non-vanishing analytic function can be approximated uniformly by
certain shifts of the Riemann zeta-function. In a more precise form: Let f(s) be a
non-vanishing continuous function defined on a disk {s ∈ C : |s| ≤ r} with some
r ∈ (0, 1

4 ), and analytic in the interior. Then, for any ε > 0, there exists τ > 0
such that

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : max

|s|≤r
|ζ(s+ 3

4 + iτ) − f(s)| < ε

}
> 0. (1)
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Thus, the set of τ for which shifts of the zeta-function approximate f(s) with a
given accuracy has positive lower density (with respect to the Lebesgue measure).
Bagchi [1] improved Voronin’s universality theorem significantly in replacing the
disk by an arbitrary compact subset of the right half of the critical strip with
connected complement. It is easily seen that ζ(s) cannot approximate functions
having zeros since otherwise the Riemann hypothesis would be violated; moreover,
approximation of a function with a zero on a set of positive lower density contradicts
classic density estimates. Bagchi [1] proved that the Riemann hypothesis is true if
and only if Voronin’s theorem holds with f(s) = ζ(s+ 3

4 + iτ0) for any real τ0.
In the meantime, similar universality results were obtained for many Dirichlet

series. For instance, Voronin [20] proved joint universality for Dirichlet L-functions;
i.e., simultaneous uniform approximation by a family of L-functions associated
with non-equivalent Dirichlet characters. Reich [13] proved discrete universality for
Dedekind zeta-functions ζK(s); here discrete means that the shifts τ are taken from
an arithmetic progression and the statement of universality takes the form: Let K
be a an algebraic number field of degree d and let K be a closed disk lying inside the
strip {s ∈ C : max{ 1

2 , 1 − 1
d} < Re s < 1}. Further, let f(s) be a non-vanishing

continuous function on K which is analytic in the interior of K. Then, for any
∆ 6= 0 and any ε > 0,

lim sup
N→∞

1

N
]

{
1 ≤ n ≤ N : max

s∈K
|ζK(s+ in∆) − f(s)| < ε

}
> 0. (2)

Notice that the strip of universality depends on the degree of the number field. In
the case of normal extensions K/Q one can deduce from the joint universality of
Dirichlet L-functions that ζK(s) is universal in 1

2 < σ < 1; this was first observed
by Gonek [4]. Laurinčikas [6] obtained universality for Lerch zeta-functions (which
in general even allow to approximate functions having zeros). For further examples
we refer to [7, 9, 16] (see also the remark below Theorem 1). It is conjectured that
any reasonable Dirichlet series is universal.

The known proofs of universality theorems are ineffective, giving neither an
estimate for the first τ which yields an approximation to a given f(s) of the desired
quality nor bounds for the positive lower density of such τ . Recently, Garunkštis
[3] obtained for a small class of functions a remarkable effective version of Voronin’s
theorem; however, it seems hopeless to extend his approach significantly. In fact,
he proved that if g(s) is analytic in |s| ≤ 0.05 with max|s|≤0.06 |g(s)| ≤ 1, then, for

any 0 < ε < 1
2 , there exists a

0 ≤ τ ≤ exp
(
exp

(
10ε−13

))
(3)

such that

max
|s|≤0.0001

∣∣log ζ
(
s+ 3

4 + iτ
)
− g(s)

∣∣ < ε.

Moreover,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : max

|s|≤0.0001

∣∣log ζ
(
s+ 3

4 + iτ
)
− g(s)

∣∣ < ε

}

≥ exp
(
−ε−13

)
.
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Note that any non-vanishing analytic function possesses an analytic logarithm; thus,
taking the exponential and writing f(s) = exp(g(s)) the latter estimate gives an
explicit lower bound for the lower density of universality.

In this paper we are concerned with the complementary question. We shall
prove upper bounds for the upper density of universality. This generalizes the re-
sults from [15] where we were restricted to approximations of analytic isomorphisms
g(s).

2. Statement of the main result

We define for a meromorphic function D(s), an analytic function f : {s ∈ C :
|s| ≤ r} → C with fixed r ∈

(
0, 1

4

)
, and positive ε the densities

d(ε, r, f ;D) = lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : max

|s|≤r

∣∣D
(
s+ 3

4 + iτ
)
− f(s)

∣∣ < ε

}
,

d(ε, r, f ;D) = lim sup
T→∞

1

T
meas

{
τ ∈ [0, T ] : max

|s|≤r

∣∣D
(
s+ 3

4 + iτ
)
− f(s)

∣∣ < ε

}
.

We will prove for a large class of functions upper bounds for the upper density
d(ε, r, f ;D) which tend with ε to zero. For this purpose, we assume that D(s)
satisfies the following axioms:

• Dirichlet series. For Re s > 1,

D(s) =

∞∑

n=1

a(n)

ns
;

• Analytic continuation. D(s) has an analytic continuation to the half-plane Re s >
1
2 except for at most finitely many poles;

• Polynomial growth. There exists a positive constant c such that, for σ > 1
2 ,

D(σ + it) � tc as t→ ∞; (4)

• Mean-square. D(s) has a bounded mean-square on vertical lines:

lim sup
1

T

∫ T

0

|D(σ + it)|2 dt <∞ for 1
2 < σ < 1; (5)

• Universality. D(s) is universal: for any continuous non-vanishing function f(s)
on |s| ≤ r, r ∈ (0, 1

4 ), which is analytic for |s| < r,

d(ε, r, f ;D) > 0 for any ε > 0. (6)

In this case we say that D(s) belongs to the class D. Of course, D 6= ∅; e.g., the
zeta-function and Dirichlet L-functions fulfill these axioms.

Theorem 1. Suppose that D ∈ D and f is a non-constant, non-vanishing, analytic
function defined on |s| ≤ r, where r ∈ (0, 1

4 ). Then, for any sufficiently small ε > 0,

d(ε, r, f ;D) � ε.
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Thus, in this rather general setting limε→0 d(ε, r, f ;D) = 0 which answers part of
a question raised in [15]. Hence, for functions in D the decay of the upper density
of universality as ε → 0 is at least linear. In the particular case of the Riemann
zeta-function we can further obtain a slight improvement:

d(ε, r, f ; ζ) = o(ε), (7)

valid under the same assumption on f and r as in the theorem.

In [16], Steuding proved universality for certain polynomial Euler products
from the Selberg class. Roughly speaking, these functions are Dirichlet series with
analytic continuation, functional equation of Riemann-type, a polynomial Euler
product representation,

L(s) =
∏

p

m∏

j=1

(
1 − αj(p)

ps

)−1

,

where the αj(p) are complex numbers with |αj(p)| ≤ 1, and which satisfy a cer-
tain reasonable normality conjecture (a very weak form of Selberg’s orthogonality
conjecture, known to be true in many instances). For these functions the region
of universality is restricted by an analytic quantity, namely, the degree d for ele-
ments L(s) in the Selberg class, a quantity defined by the data of the functional
equation; in the case of Dedekind zeta-functions this analytic degree coincides with
the degree of the corresponding field extension, and the strip of universality with
{s ∈ C : max{ 1

2 , 1 − 1
d} < Re s < 1}. Under assumption of the analogue of the

Lindelöf hypothesis for such universal Dirichlet series, this restriction is not nec-
essary and L(s) is universal in the right half of the critical strip. This restriction
relies on the mean-square estimate (5) which is not known to hold in the range
1
2 < σ ≤ 1 − 1

d if the degree of L(s) is greater than 2 is the degree of L(s). (For
more information we refer to [16].) It should be mentioned that the statement of
Theorem 1 can also be applied to Dirichlet series with a restricted strip of univer-
sality, e.g., Dedekind zeta-functions. For this one simply has to apply a suitable
linear mapping from the restricted strip of universality to the right half of the crit-
ical strip. Furthermore, it can also be applied to the situation when the function
f(s) is defined on an arbitrary compact subset K of the strip of universality with
connected complement provided that K has a non-empty interior. In this case one
can find a closed disk with sufficiently small radius inside and the estimate for the
upper density with respect to this disk is an upper bound for the upper density
with respect to K too. For the sake of simplicity, here we have chosen the form of
Voronin’s original universality theorem.

We shall prove the theorem and (7) in the following section. In the final
section, we discuss the case of discrete universality. As an application we improve
and generalize an estimate of Reich concerning small values of Dirichlet series on
arithmetic progressions in the particular case of the Riemann zeta-function.

3. Proof of Theorem 1 and Estimate (7)

The idea of proof is more or less the same as in [15]. We shall apply Rouché’s
theorem to obtain information about the value-distribution of D(s) in the strip
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3
4 − r ≤ Re s ≤ 3

4 + r from the distribution of values of f(s) on the disk |s| ≤ r.
However, the fact that we do not have strong restrictions on f(s) requires some
further ideas.

Proof of Theorem 1. First, assume that there exists a complex number c in the
interior of f({s ∈ C : |s| ≤ r}) (which is not empty since f(s) is not constant)
such that

f(s) = c+ γ(s− λc) +O
(
|s− λc|2

)
(8)

for some λc of modulus less than r and some γ 6= 0; this means that λc is a c-value
of f(s) of multiplicity one.

Now suppose that

max
|s|=r

∣∣{D
(
s+ 3

4 + iτ
)
− c} − {f(s) − c}

∣∣ < min
|s|=r

|f(s) − c|.

Then, by Rouché’s theorem, D(z) has at least one c-value ρc in {z = s+ 3
4 + iτ :

|s| < r}. Moreover, the inequality in question holds for sufficiently small ε whenever

max
|s|≤r

∣∣D
(
s+ 3

4 + iτ
)
− f(s)

∣∣ < ε ≤ min
|s|=r

|f(s) − c|. (9)

By (6), the first inequality is assumed to hold for a set of τ with positive lower
density. The second one follows for sufficiently small ε from the fact that c = f(λc)
has positive distance to the boundary of f({s ∈ C : |s| ≤ r}). Thus, a c-value of
f(s) generates many c-values of D(z).

However, it can happen that for different τ the generated c-values ρc of D(z)
are the same (universality is a phenomenon that occurs in intervals). First, we shall
show that then the corresponding shifts differ only by a small quantity.

Assume that ρc = sj + 3
4 + iτj with |sj | < r for j = 1, 2. It follows from (9)

that
|f(λc) − f(sj)| = |c− f(sj)| < ε. (10)

Since f ′(λc) = γ 6= 0, there exists a neighborhood of c where the inverse f−1 exists
and is a one-valued continuous function. In view of the continuity, (10) implies

|sj − λc| < ε = ε(ε), (11)

where ε(ε) tends with ε to zero; since f(s) behaves locally as a linear function by
(8), we have ε(ε) � ε. Now (11) implies

|τ2 − τ1| = |s1 − s2| ≤ |s1 − λc| + |s2 − λc| < 2ε. (12)

Denote by Ij(T ) the disjoint intervals in [0, T ] such that (9) is valid exactly
for

τ ∈
⋃

j

Ij(T ) =: I(T ).

Inequality (12) implies that in every interval Ij(T ) lie at least

1 +

[
1

2ε
measIj(T )

]
≥ 1

2ε
measIj(T )

c-values ρc of D(s) in the strip 1
2 < Re s < 1; here [x] stands for the greatest integer

≤ x. Thus, the number Nc(T ) of these c-values ρc (counting multiplicities) satisfies
the estimate

2εNc(T ) ≥ measI(T ). (13)
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The next step is to locate the real parts of these c-values a bit more precisely.
Obviously, by (12),

Reλc + 3
4 − ε < Re ρc = Re sj + 3

4 < Reλc + 3
4 + ε.

Clearly, for sufficiently small ε this range for the c-values lies in the interior of the
strip of universality. Hence, if we let Nc(σ1, σ2, T ;D) count all c-values of D(s) in
the region σ1 < Re s < σ2, 0 < Im s ≤ T (again, according multiplicities), then we
can rewrite (13) as

measI(T ) ≤ 2εNc

(
Reλc + 3

4 − ε,Reλc + 3
4 + ε, T ;D

)
. (14)

In view of (6) there exists an increasing sequence (Tk) with limk→∞ Tk = ∞ such
that for any δ > 0

measI(Tk) ≥ ( d(ε, r, f ;D) − δ)Tk.

Consequently, this together with (14) leads to

( d(ε, r, f ;D) − δ)Tk ≤ 2εNc

(
Reλc + 3

4 − ε,Reλc + 3
4 + ε, T ;D

)
.

Sending δ → 0, yields

d(ε, r, f ;D) ≤ lim sup
T→∞

2ε

T
Nc

(
Reλc + 3

4 − ε,Reλc + 3
4 + ε, T ;D

)
. (15)

Since the set of poles of D(s) in σ > 1
2 has zero density but d(ε, r, f ;D) > 0, these

poles do not affect the above observations. Next we want to replace the right-hand
side of (15) by a more suitable expression. For this purpose we define

`(s) =






1

a(1) − c
(D(s) − c) if c 6= a(1),

ms

a(m)
(D(s) − c) if c = a(1),

where m is the minimum over all positive integers n > 1 for which a(n) 6= 0. Then
the c-values of D(s) correspond one-to-one to the zeros of `(s) (having the same
multiplicity) and

`(σ + it) = 1 + λ−σ−it + O(Λ−σ) (16)

with some constants λ,Λ satisfying 1 < λ < Λ, as σ → ∞. Now let N(σ, T ) count
the number of zeros of `(s) (resp. the number of c-values of D(s)) in the region
Re s > σ, 0 < Im s ≤ T (according multiplicities). Then Littlewood’s lemma (see
[17], §9.9) yields

∫ σ2

σ1

N(σ, T ) dσ =
1

2πi

∫

R
log `(s) ds+O(1), (17)

where R is the rectangular contour with vertices σ1, σ2, σ1 + iT, σ2 + iT with 1
2 <

σ1 < 1 < σ2, and where the error term arises from the possible poles of D(s) (to
define here log `(s) we choose the principal branch of the logarithm on the real axis
whereas for other points s the value of the logarithm is obtained by continuous
variation). By (16) we may choose σ2 such that `(s) has no zeros in the half plane
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Re s ≥ σ2. A standard application of Jensen’s formula shows that the right-hand
side of (17) can be replaced by

1

2π

∫ T

0

log |D(σ1 + it)| dt+O(T )

≤ T

4π
log

(
1

T

∫ T

0

|D(σ1 + it)|2 dt

)
+O(T );

here we have to use (4) and (16) (the reader can find the details, for example, in
[8]). The right-hand side can be bounded by the mean-square estimate (5). This
gives in (17)

∑

Re ρc>σ1
0<Im ρc≤T

(Re ρc − σ1) � T, (18)

as T → ∞; here the sum on the left-hand side is taken over all c-values ρc of D(s),
not necessarily generated by λc. Since, for 1

2 < σ1 < σ3,

N(σ3, T ) ≤ 1

σ3 − σ1

∑

Re ρc>σ1
0<Im ρc≤T

(Re ρc − σ1),

we may estimate

Nc

(
Reλc + 3

4 − ε,Reλc + 3
4 + ε, T ;D

)

≤ N(1
2 (1

2 + Reλc + 3
4 − ε), T ) � T.

Thus, the estimate of the theorem follows from (15) provided we can find a c for
which (8) holds.

Finally, suppose that for all c in the interior of f({s ∈ C : |s| ≤ r}) the local
expansion is different than (8), i.e., f ′(s) vanishes identically in the interior. Then
f is a constant function, a contradiction to the assumption of the theorem.

It remains to give the

Proof of (7). Here we shall use an old result of Bohr & Jessen: by Hilfssatz 6 from
[2], for any complex c 6= 0,

lim
T→∞

1

T
Nc

(
Reλc + 3

4 − ε,Reλc + 3
4 + ε, T ; ζ

)
= o(1). (19)

Substituting this in (15) implies (7).

4. Value-distribution on arithmetic progressions

We conclude with the special case of discrete universality, introduced by Reich [13]
for Dedekind zeta-functions ζK(s) (see (2)). The argument in the proof of Theorem
1 which gave us a factor ε for the upper bound does not apply if we consider discrete
shifts and so, in general, we do not get an upper bound which tends with ε to zero.
Anyway, for the zeta-function we obtain via (19)

lim sup
N→∞

1

N
]

{
1 ≤ n ≤ N : max

|s|≤r

∣∣ζ(s+ 3
4 + in∆) − f(s)

∣∣ < ε

}
= o(1) (20)



80 Jörn Steuding

as ε → 0. This is of interest with respect to an estimate of Reich concerning
small values of Dirichlet series on arithmetic progressions. In [14], he proved: Let
f(s) be a Dirichlet series, not identically zero, which has a half-plane of absolute
convergence σ > σa, an analytic continuation to σ > σm (σm < σa) except for at
most a finite number of poles on the line σ = σa, such that its mean square exists
and f(s) is of finite order of growth in any closed strip in σm < σ < σa. Then, for
any σ > σm, σ 6= σa, any sufficiently small ε > 0, and any ∆, neither being equal
to zero nor of the form 2π` cos(q/r) with positive integers `, q, r and q 6= r,

lim sup
N→∞

1

N
] {1 ≤ n ≤ N : |f(σ + in∆)| < ε} < 1.

In particular, it follows that f(σ + i∆n) cannot converge to zero as n → ∞, and
hence sn = σ + i∆n cannot be a sequence of zeros of f(s). It should be noticed
that Reich’s class of Dirichlet series shares many axioms with D.

Now we shall consider the special case of the Riemann zeta-function. Reich’s
theorem also includes estimates for c-values on arithmetic progressions (since with
f(s) also f(s)−c satisfies the conditions). We shall note an improvement of Reich’s
theorem:

Theorem 2. Let c be any constant, σ ∈ (1
2 , 1), and 0 6= ∆ ∈ R. Then

lim
ε→0

lim sup
N→∞

1

N
] {1 ≤ n ≤ N : |ζ(σ + in∆) − c| < ε} = 0.

In particular, there does not exist an arithmetic progression sn = σ + i∆n (with σ
and ∆ as in the theorem) on which ζ(s) converges to any complex number c.

Proof. Let f(s) be a non-constant, non-vanishing, analytic function defined on
a small disk centered at σ ∈ (1

2 , 1) such that its closure lies inside the strip of
universality for the zeta-function. Further assume that

|f(s) − c| < ε;

this choice for f(s) is certainly possible for any complex number c. By the triangle
inequality,

|ζ(σ + in∆) − c| ≤ |ζ(σ + in∆) − f(s)| + |f(s) − c|
for any s. Hence, applying (20) yields

lim sup
N→∞

1

N
] {1 ≤ n ≤ N : |ζ(σ + in∆) − c| < 2ε} � ε.

This is the assertion of the theorem.

An alternative proof can be given by using the deep Hauptsatz I of Bohr &
Jessen [2]; this approach does not depend on the universality property of ζ(s). As a

matter of fact, this theorem may also be used to prove the estimate d(ε, r, f ; ζ) � ε2

for constant f 6= 0, a case not included in Theorem 1.

There are remarkable results for a related problem. Putnam [10], [11] showed
that ζ(s) does not have an infinite vertical arithmetic progressions of zeros (or even
approximate zeros). Lapidus & van Frankenhuijsen [5], Chapter 9, gave a different
proof of Putnam’s theorem. Watkins (cf. [18]) was the first to give upper bounds
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for the length of such arithmetic progressions (valid for any Dirichlet L-functions).
Recently, van Frankenhuijsen [18] improved these bounds by showing that

ζ(σ + in∆) = 0 for 0 < |n| < N

with σ,∆ > 0 and N ≥ 2 cannot hold for

N ≥ 60

(
∆

2π

) 1
σ
−1

log ∆

(his method also applies to Dirichlet L-functions). It is conjectured that there are
no arithmetic progressions at all; there are even no zeros known of the form 1

2 + iγ

and 1
2 + i2γ. The methods of Putnam, Lapidus and van Frankenhuijsen do not

apply to c-values.
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[2] H. Bohr, B. Jessen, Über die Werteverteilung der Riemannschen Zetafunktion II, Acta

Math. 58 (1932), 1-55
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