[2] Brillhart J., Lehmer D. H., Selfridge L., Tuckerman B., Wagstaff S. S., Jr.: Factorizations of $b^n\pm 1$, $b=2,3,5,6,7,10,11,12$ up to high powers. Contemporary Mathematics, Vol. 22, American Mathematical Society, Providence 1983.
[3] Cipolla M.:
Sui numeri composti $P$, che verificano la congruenza di Fermat $\alpha ^{P-1}\equiv 1(\mathop {\rm mod}\,P)$. Annali di Matematica (3) 9 (1904), 139–160.
DOI 10.1007/BF02419871
[4] Dickson L. E.: History of the Theory of Numbers. vol. I, New York 1952.
[5] Duparc H. J. A.: Enige generalizaties van de getallen Van Poulet en Carmichael. Math. Centrum Amsterdam, Rapport Z. W. 1956-005.
[7] Granville A. J.: The prime $k$-tuplets conjecture implies that there are arbitrarity long arithmetic progressions of Carmichael numbers. (written communication of December 1995).
[8] Halberstam H., Rotkiewicz A.:
A gap theorem for pseudoprimes in arithmetic progression. Acta Arith. 13 (1967/68), 395–404.
MR 0225736
[9] Jeans J. A.: The converse of Fermat’s theorem. Messenger of Mathematics 27 (1898), p. 174.
[10] Keller W.:
Factors of Fermat numbers and large primes of the form $k\cdot 2^n+1$. Math. Comp., 41 (1983), 661–673.
MR 0717710
[13] Knopfmacher J., Porubsky:
Topologies Related to Arithmetical Properties of Integral Domains. Expo. Math. 15 (1997), 131–148.
MR 1458761 |
Zbl 0883.11043
[14] Korselt A.: Problème chinois. L’Interm. des Math. 6 (1899), 142-143.
[15] Kraïtchik M.: Théorie des Nombres. Gauthier – Villars, Paris 1922.
[16] Kraïtchik M.: On the factorization of $2^n\pm 1$. Scripta Math. 18 (1952), 39–52.
[17] Křižek M., Luca F., Somer L.:
17 Lectures on Fermat Numbers. From Number Theory to Geometry, Canadian Mathematical Society, Springer 2001.
MR 1866957
[18] Lucas E.: Sur la série récurrent de Fermat. Bolletino di Bibliografia e di Storia della Scienze Matematiche e Fisiche 11 (1878), 783–798.
[19] Lucas E.: Théorèmes d’arithmetique. Atti della Reale Accademia delle scienze di Torino 13 (1878), 271–284.
[20] Malo E.: Nombres qui, sans être premiers, vérifient exceptionellement une congruence de Fermat, L’Interm. des Math. 10 (1903), 8.
[21] Mahnke D.: Leibniz and der Suche nach einer allgemeinem Primzahlgleichung. Bibliotheca Math. Vol. 13 (1913), 29–61.
[22] Needham J.:
Science and Civilization in China, vol. 3: Mathematics and Sciences of the Heavens and the Earth. Cambridge 1959, p. 54, footnote A.
MR 0139507
[23] Pinch Richard G. E.:
The pseudoprimes up to $10^{13}$. Algorithmic Number Theory, 4th International Symposium, Proceedings ANTS-IV Leiden, The Netherlands, July 2000, Springer 2000, 456–473.
MR 1850626
[24] Pomerance C.:
A new lower bound for the pseudoprimes counting function. Illinois J. Math. 26 (1982), 4–9.
MR 0638549
[25] Pomerance C., Selfridge J. L., Wagstaff S. S.:
The pseudoprimes to $25\cdot 10^9$. Math. Comp. 35 (1980), 1009–1026.
MR 0572872
[27] Riesel H.:
Prime Numbers and Computer Methods for Factorization. Birkhäuser, Boston-Basel-Berlin, 1994.
MR 1292250 |
Zbl 0821.11001
[29] Rotkiewicz A.:
Sur les nombres pseudopremiers de la forme $ax+b$. C.R. Acad. Sci. Paris 257 (1963), 2601–2604.
MR 0162757 |
Zbl 0116.03501
[30] Rotkiewicz A., Sierpiński W.:
Sur l’équation diophantienne $2^x-xy=2$. Publ. Inst. Math. (Beograd) (N.S.) 4 (18) (1964), 135–137.
MR 0171745
[31] Rotkiewicz A., Schinzel A.:
Sur les nombres pseudopremiers de la forme $ax^2+bxy+cy^2$. ibidem 258 (1964), 3617–3620.
MR 0161828
[32] Rotkiewicz A.:
Sur les formules donnant des nombres pseudopremiers. Colloq. Math. 12 (1964), 69–72.
MR 0166138 |
Zbl 0129.02703
[33] Rotkiewicz A.:
Pseudoprime Numbers and Their Generalizations. Stud. Assoc. Fac. Sci. Univ. Novi Sad, 1972, pp. i+169.
MR 0330034 |
Zbl 0324.10007
[36] Sarrus F.:
Démonstration de la fausseté du théorème énoncé à la page 320 du $IX^e$ volume de ce recueil. Annales de Math. Pure Appl. 10 (1819–20), 184–187.
MR 1556023
[37] Schinzel A.:
On primitive prime factors of $a^n-b^n$. Proc. Cambridge Philos. Soc. 58(1962), 555-562.
MR 0143728
[38] Sierpiński W.:
Remarque sur une hypothèse des Chinois concernant les nombres $(2^n-2)/n$. Colloq. Math. 1 (1948), 9.
MR 0023256
[39] Sierpiński W.:
A selection of Problems in the Theory of Numbers. Pergamon Press. New York, 1964.
MR 0170843
[40] Sierpiński W.:
Elementary Theory of numbers. $2^{\rm nd}$ Engl. ed. revised and enlargend by A. Schinzel, Państwowe Wydawnictwo Naukowe, Warszawa, 1988.
MR 0930670
[41] Steuerwald R.:
Über die Kongruenz $2^{n-1}\equiv 1(\mathop {\rm mod}\,n)$. S.-B. Math.-Nat. Kl., Bayer. Akad. Win., 1947, 177.
MR 0030541
[44] Williams Hugh C.:
Edouard Lucas and Primality Testing. Canadian Mathematical Society Series of Monographs and Advanced Texts, vol. 22 A Wiley - Interscience Publication, New York-Chichester-Weinheim-Brisbane-Singapore-Toronto 1998.
MR 1632793 |
Zbl 1155.11363