[1] Arratia R., Barbour A.D., Tavaré S.:
Logarithmic Combinatorial Structures: a Probabilistic Approach. EMS Monographs in Mathematics, EMS Publishing House, Zürich, 2003.
MR 2032426
[2] Arratia R., Tavaré S.:
Limit theorems for combinatorial structures via discrete process approximations. Random Structures and Algorithms 3(1992), 3, 321–345.
DOI 10.1002/rsa.3240030310 |
MR 1164844
[3] Babu G.J., Manstavičius E.:
Processes with independent increments for the Ewens sampling formula. Ann. Inst. Stat. Math. 54(2002), 3, 607–620.
DOI 10.1023/A:1022419328971 |
MR 1932405
[4] Elliott P. D. T. A.:
Probabilistic Number Theory. I, II. Springer, New York–Heidelberg–Berlin, 1979/80.
MR 0551361 |
Zbl 0431.10029
[5] Goncharov V.L.: On the distribution of cycles in permutations. Dokl. Acad. Nauk SSSR 35(1942), 299–301.
[7] Kubilius J.:
Probabilistic Methods in the Theory of Numbers. Amer. Math. Soc. Translations 11, Providence, RI, 1964.
MR 0160745 |
Zbl 0133.30203
[10] Manstavičius E.:
Functional limit theorem for sequences of mappings on the symmetric group. In: Anal. Probab. Methods in Number Theory, A. Dubickas et al (Eds), TEV, Vilnius, 2002, 175–187.
MR 1964861
[12] Manstavičius E.: Asymptotic value distribution of additive functions defined on the symmetric group. (submitted, 2005, 23 p.).
[13] Šiaulys J.:
Factorial moments for distributions of additive functions. Lith. Math. J. 40(2000), 4, 389–408.
DOI 10.1023/A:1007617714857