[1] L. Angermann:
An Introduction to Finite Volume Methods for Linear Elliptic Equations of Second Order. Preprint No. 164, Universität Erlangen-Nürnberg, Institut für Angewandte Mathematik I, 1995.
MR 1370105
[2] D. Braess:
Finite Elemente. Springer-Verlag, Berlin, 1992.
Zbl 0754.65084
[3] F. Brezzi, M. Fortin:
Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York, 1991.
MR 1115205
[4] A. K. Cline, R. J. Renka:
A constrained two-dimensional triangulation and the solution of closest node problems in the presence of barriers. SIAM J. Numer. Anal. 27 (1990), 1305–1321.
MR 1061131
[5] Ch. Großmann, H.-G. Roos:
Numerik partieller Differentialgleichungen. Teubner, Stuttgart, 1992.
MR 1219087
[6] F. Kratsch, H.-G. Roos: Diskrete Maximumprinzipien und deren Anwendung. Preprint 07-02-87, TU Dresden, 1987.
[7] F. P. Preparata, M. I. Shamos:
Computational Geometry. An Introduction. Springer-Verlag, New York, 1985.
MR 0805539
[8] V. Ruas Santos:
On the strong maximum principle for some piecewise linear finite element approximate problems of nonpositive type. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29 (1982), 473–491.
MR 0672072
[10] G. Windisch:
M-Matrices in Numerical Analysis. Teubner, Leipzig, 1989.
MR 1059459