[2] M. Artola: Homogenization and electromagnetic wave propagation in composite media with high conductivity inclusions. In: Proceedings of the Second Workshop Composite Media and Homogenization Theory, G. Dal Maso and G. Dell’Antonio (eds.), World Scientific Publishing Company, Singapore-New York-London, 1995.
[3] M. Artola, M. Cessenat:
Un probléme raide avec homogénéisation en électromagnétisme. C. R. Acad. Sci. Paris, Sér. I Math. 310 (1990), 9–14.
MR 1044404
[4] M. Artola, M. Cessenat:
Diffraction d’une onde électromagnetique par un obstacle borné à permittivité et perméabilité élevées. C. R. Acad. Sci. Paris, Sér. I Math. 314 (1992), 349–354.
MR 1153713
[5] A. Bensoussan, J. L. Lions, G. Papanicolaou:
Asymptotic Analysis for Periodic Structures. Studies in Mathematics and its Applications. North-Holland Publishing Company, Amsterdam-New York-Oxford, 1978.
MR 0503330
[6] M. Cessenat:
Mathematical Methods in Electromagnetism. Linear Theory and Applications. Series on Advances in Mathematics for Applied Sciences, Vol 41. World Scientific Publishing Company, Singapore-New York-London, 1996.
MR 1409140
[7] G. Duvaut, J. L. Lions:
Inequalities in Mechanics and Physics. Springer-Verlag, Berlin-Heidelberg-New York, 1976.
MR 0521262
[9] A. Holmbom: The concept of parabolic two-scale convergence, a new compactness result and its application to homogenization of evolution partial differential equations. Research report 1994–18. (1994), Mid-Sweden University, Östersund.
[10] A. Holmbom: Some Modes of Convergence and Their Application to Homogenization and Optimal Composites Design. Ph.D. thesis, Luleå University of Technology, 1996.
[11] P. A. Markowich, F. Poupaud:
The Maxwell equation in a periodic medium: Homogenization of the energy density. Ann. Sc. Norm. Sup. Pisa Cl. Sci. 23 (1996), 301–324.
MR 1433425
[12] A. Negro:
Some problems of homogenization in quasistationary Maxwell equations. In: Applications of Multiple Scaling in Mechanics. Proc. Int. Conf., Ecole Normale Superieure, Paris 1986, Rech. Math. Appl. 4, Masson, Paris, 1987, pp. 246–258.
MR 0901998 |
Zbl 0644.73077
[14] A. Pazy:
Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences 44. Springer-Verlag, New York, 1983.
MR 0710486
[15] J. Sanchez-Hubert:
Étude de certaines équations intégrodifférentielles issues de la théorie de l’homogénéisation. Boll. Un. Mat. Ital. B 5 16 (1979), 857–875.
MR 0553802 |
Zbl 0421.45009
[16] J. Sanchez-Hubert, E. Sanchez-Palencia:
Sur certain problémes physiques d’homogénéisation donnant lieu à des phénomènes de relaxation. C. R. Acad. Sci. Paris, Sér. A 286 (1978), 903–906.
MR 0509054
[17] E. Sanchez-Palencia:
Non-homogeneous Media and Vibration Theory Lecture Notes in Physics 127. Springer-Verlag, Berlin-Heidelberg-New York, 1980.
MR 0578345
[18] J. Vanderlinde: Classical Electromagnetic Theory. John Wiley & Sons, New York, 1993.
[19] J. Wyller, N. Wellander, F. Larsson, D. S. Parasnis:
Burger’s equation as a model for the IP phenomenon. Geophysical Prospecting 40 (1992), 325–341.
DOI 10.1111/j.1365-2478.1992.tb00378.x
[20] E. Zeidler: Nonlinear Functional Analysis and its Applications, Volumes IIA and IIB. Springer-Verlag, Berlin, 1990.
[21] V. V. Zhikov, S. M. Kozlov and O. A. Oleinik:
Homogenization of Differential Operators and Integral Functionals. Springer-Verlag, Berlin, 1994.
MR 1329546