[1] H.-D. Alber:
Materials with Memory. Lecture Notes in Mathematics, Vol. 1682. Springer-Verlag, Berlin-Heidelberg, 1998.
MR 1619546
[3] H. Brézis: Opérateurs Maximaux Monotones. North-Holland Math. Studies, Amsterdam, 1973.
[4] M. Brokate:
Elastoplastic constitutive laws of nonlinear kinematic hardening type. In: Functional Analysis with Current Applications in Science, Technology and Industry (M. Brokate, A. H. Siddiqi, eds.), Pitman Res. Notes Math. Ser., 377, Longman, Harlow, 1998, pp. 238–272.
MR 1607891 |
Zbl 0911.73021
[9] P. Dupuis, A. Nagurney:
Dynamical systems and variational inequalities. Ann. Oper. Res. 44 (1993), 9–42.
MR 1246835
[10] G. Duvaut, J.-L. Lions:
Inequalities in Mechanics and Physics. Springer-Verlag, Berlin, 1976, French edition: Dunod, Paris, 1972.
MR 0521262
[11] M. A. Krasnoseľskiǐ, A. V. Pokrovskiǐ:
Systems with Hysteresis. Springer-Verlag, Berlin, 1989, Russian edition: Nauka, Moscow, 1983.
MR 0742931
[12] P. Krejčí:
Hysteresis, Convexity and Dissipation in Hyperbolic Equations. Gakuto Int. Ser. Math. Sci. Appl., Vol. 8. Gakkōtosho, Tokyo, 1996.
MR 2466538
[13] P. Krejčí:
Evolution variational inequalities and multidimensional hysteresis operators. In: Nonlinear Differential Equations (P. Drábek, P. Krejčí and P. Takáč, eds.). Research Notes in Mathematics, Vol. 404, Chapman & Hall/CRC, London, 1999, pp. 47–110.
MR 1695378
[14] J.-J. Moreau:
Evolution problem associated with a moving convex set in a Hilbert space. J. Differential Eqations 26 (1977), 347–374.
MR 0508661
[15] J. Nečas, I. Hlaváček:
Mathematical Theory of Elastic and Elastico-Plastic Bodies: An Introduction. Elsevier, Amsterdam, 1981.
MR 0600655
[16] A. Visintin:
Differential Models of Hysteresis. Springer-Verlag, Berlin-Heidelberg, 1994.
MR 1329094 |
Zbl 0820.35004