Article
Keywords:
rainbowness; Platonic solids; prisms; antiprisms; Archimedean solids
Summary:
We introduce the rainbowness of a polyhedron as the minimum number $k$ such that any colouring of vertices of the polyhedron using at least $k$ colours involves a face all vertices of which have different colours. We determine the rainbowness of Platonic solids, prisms, antiprisms and ten Archimedean solids. For the remaining three Archimedean solids this parameter is estimated.
References:
[1] V. G. Ashkinuze: On the number of semiregular polyhedra. Mat. Prosvesc. 1 (1957), 107–118. (Russian)
[2] H. S. M. Coxeter:
Regular Potytopes. Dover Pub. New York, 1973.
MR 0370327
[4] L. Fejes Tóth:
Regular Figures. Pergamon Press, Oxford, 1964.
MR 0165423
[5] B. Grünbaum:
Convex Polytopes (2nd edition). Springer Verlag, 2004.
MR 1976856
[6] E. Jucovič: Convex Polyhedra. Veda, Bratislava, 1981. (Slovak)