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Abstract. We introduce the rainbowness of a polyhedron as the minimum number k such
that any colouring of vertices of the polyhedron using at least k colours involves a face all
vertices of which have different colours. We determine the rainbowness of Platonic solids,
prisms, antiprisms and ten Archimedean solids. For the remaining three Archimedean solids
this parameter is estimated.
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1. Introduction

A polyhedron P in E3 is a locally finite collection of planar convex polygons, called

the faces, such that every edge of every polygon is an edge of precisely one other

polygon (see [2], [3], [4], [5], [6], [8]). The edges and the vertices of P are defined in

the usual way (see [2], [3], [4], [5]).

A polyhedron P is called semiregular (see [2], [4], [5], [8]) if all of its faces are

regular polygons and there exists a sequence σ = (p1, p2, . . . , pq), called the cyclic

sequence of P , such that every vertex of P is surrounded by a p1-gon, a p2-gon, . . ., a

pq-gon, in this order within rotation and reflection. It is a well-known result (see [2],

[4], [5]) that if a polyhedron P is the boundary cell complex of a convex polytope (see

[5] for definition) and P is semiregular having the cyclic sequence σ = (p1, . . . , pq),

then pi > 3, q > 3 and

(1)

q
∑

i=1

1

pi

>
q

2
− 1.
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A semiregular polyhedron P is called the (p1, p2, . . . , pq)-polyhedron if it is determined

by the cyclic sequence σ = (p1, p2, . . . , pq).

The above conditions imply that the set of semiregular polyhedra consists of pre-

cisely five Platonic solids, thirteen Archimedean solids (see [3]), a single (3, 4, 4, 4)-

polyhedron [1] and two infinite families: the prisms, i.e. (4, 4, n)-polyhedra for every

n > 3, n 6= 4, and the antiprisms, i.e. (3, 3, 3, n)-polyhedra for every n > 4.

Let P be a polyhedron with the vertex set V (P ). Motivated by the paper of

Negami [7] on looseness of triangulations we define the rainbowness of a polyhedron

P , rb(P ), as the minimum number k such that any surjective colour assignment

ϕ : V (P ) → {1, 2, . . . , k} involves a face all vertices of which have different colours.

The main purpose of this paper is to determine the rainbowness of all semiregular

polyhedra. Instead of studying convex polyhedra it is enough to study their graphs,

i.e. graphs determined by vertices and edges of polyhedra. This is allowed due to a

famous theorem by Steinitz (see e.g. [5]) that states that a graph is the graph of a

convex polyhedron if and only if it is planar and 3-connected.

We use the standard terminology except for a few notions defined in the sequel. Let

ϕ be a vertex colouring using r colours (or r-colouring) then for any face α ∈ F (G) the

notion ϕ(α) will denote the set of colours used at the vertices of α. If |ϕ(α)| = deg(α),

the size of the face α, then α is called a rainbow face. Analogously for any set X of

vertices we will denote by ϕ(X) the set of colours used at the vertices of X under a

colouring ϕ. An edge e = uv with ϕ(u) = ϕ(v) will be called a monochromatic edge.

The set {1, 2, . . . , n} will be denoted by [1, n] and the set {k, k + 1, . . . , m} by [k, m].

The paper is organized as follows: In Chapter 2 we will present our knowledge

concerning rainbowness of Platonic solids, Chapter 3 is devoted to rainbowness of

prisms and Chapter 4 to antiprisms. In Chapter 5 we consider the Archimedean

solids. In short Chapter 6 we investigate the non Archimedean (3, 4, 4, 4)-polyhedron.

2. Platonic solids

The set of Platonic solids consists of five members:

(i) the tetrahedron, or equivalently, the (3, 3, 3)-polyhedron,

(ii) the octahedron, or the (3, 3, 3, 3)-polyhedron,

(iii) the icosahedron, i.e. the (3, 3, 3, 3, 3)-polyhedron,

(iv) the cube, i.e. the (4, 4, 4)-polyhedron,

(v) the dodecahedron, i.e. the (5, 5, 5)-polyhedron.

2.1. The tetrahedron.

It is easy to see that the following is true:
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Theorem 2.1. Let T be the tetrahedron. Then

rb(T ) = 3.

2.2. The octahedron.

Figure 2.1 shows a 3-colouring of the octahedron O that has no rainbow face. This

means that rb(O) > 4. Next suppose that there exists a 4-colouring of O which has

no rainbow face. As O has six vertices, at least one colour, say 1, is used exactly

once. Let a vertex x be coloured with 1. Then all neighbours of x must have the

same colour. However, for the remaining two colours there is only one vertex, a

contradiction. So we have proved

2 3

2

21

2

Figure 2.1

Theorem 2.2. Let O be the octahedron. Then

rb(O) = 4.

2.3. The icosahedron.

Theorem 2.3. Let I be the icosahedron. Then

rb(I) = 5.

P r o o f. It is easy to find in I two vertex-disjoint wheels as subgraphs. Let the

first one have the vertex set X = {x1, x2, x3, x4, x5, x6} with a central vertex x6 and

spokes xix6 for every 1 6 i 6 5 and rim edges xixi+1 for every 1 6 i 6 5; indices

here and in the next are taken modulo 5. The second wheel is created by the vertex

set Y = {y1, y2, y3, y4, y5, y6} with a central vertex y6, spokes yiy6, 1 6 i 6 5, and

rim edges yiyi+1, 1 6 i 6 5. Let the remaining edges of I be xiyi for any 1 6 i 6 5

and xiyi+1, 1 6 i 6 5.
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The following 4-colouring ϕ that has no rainbow face gives rb(I) > 5: ϕ(xi) = 1

for any 1 6 i 6 5, ϕ(x6) = 2, ϕ(yi) = 3 for any 1 6 i 6 5 and ϕ(y6) = 4.

To prove that rb(I) 6 5 suppose that there is a 5-colouring ϕ without any rainbow

face. Without loss of generality one can suppose that ϕ(X) = {1, 2, 3}, ϕ(x6) = 1

and ϕ(x1) = 1. Clearly on the rim there is no adjacent pair of colours 2 and 3.

One can suppose that ϕ(x2) = 2. Then there are two possibilities for ϕ(x3), either

ϕ(x3) = 1 or ϕ(x3) = 2.

1. Let ϕ(x3) = 1. Then ϕ(x4) = 3 and ϕ(x5) ∈ {1, 3}. Consequently, then

ϕ(y2) ∈ {1, 2}, ϕ(y3) ∈ {1, 2}, ϕ(y4) ∈ {1, 3} and {4, 5} ⊆ {ϕ(y1), ϕ(y5), ϕ(y6)}.

Then either the triangle [y4y5y6] or the triangle [y1y2y6] is a rainbow, a contradiction.

2. Let ϕ(x3) = 2. Then ϕ(x4) = 1, ϕ(x5) = 3, ϕ(y1) ∈ {1, 3}, ϕ(y2) ∈ {1, 2},

ϕ(y4) ∈ {1, 2}, ϕ(y5) ∈ {1, 3} and {ϕ(y3), ϕ(y6)} = {4, 5}.

However, in this case the triangle [y2y3y6] is rainbow, a contradiction. �

2.4. The cube.

In Figure 2.2 there is a 5-colouring of the cube Q having no rainbow face. This

shows that rb(Q) > 6. Next suppose that there is a 6-colouring ϕ of Q having no

rainbow face. Observe that on Q there are two vertex-disjoint quadrangles α and β

(see Figure 2.2) that cover all eight vertices of Q. Clearly |ϕ(α)| 6 3 and |ϕ(β)| 6 3

but ϕ is a 6-colouring; so |ϕ(α)| = 3, |ϕ(β)| = 3 and ϕ(α) ∩ ϕ(β) = ∅. Two vertices

of α that bring α not to be rainbow are either neighbouring or diagonal. In the

former case they enforce another face not to be rainbow, but not in the latter case.

So the face α can cause that also at most one other neighbouring face of α can be

non-rainbow. Analogously the face β can enforce at most one other face not to be

rainbow. So at most four faces at Q can be non-rainbow but Q has six faces, and

therefore there are at least two rainbow ones, a contradiction. So we have proved

1 1

35

32

2 4

α β

Figure 2.2

Theorem 2.4. Let Q be the cube. Then

rb(Q) = 6.
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2.5. The dodecahedron.

Theorem 2.5. Let D be a dodecahedron. Then

rb(D) = 15.

P r o o f. The colouring ϕ in Figure 2.3 gives us the lower bound 15.

14

1

1 7

9

3

3

1011

12

2

4

56

13

5

6

2 8

4

Figure 2.3

To prove the opposite inequality suppose that there is a 15-colouring ϕ of D that

has no rainbow face. Let us fix one vertex for each colour c, c ∈ [1, 15]. The remaining

five vertices create the set X = {x1, x2, x3, x4, x5}. Consider the colour set ϕ(X).

There are four possibilities for the cardinality of the set ϕ(X).

1. Let |ϕ(X)| = 5. Then in D there are five pairs of vertices, each pair of the

same colour. One pair can enforce at most two non-rainbow faces. So at most 10

non-rainbow faces are in D in this case, a contradiction because D has twelve faces.

2. Let |ϕ(X)| = 4. Now there is one triple of vertices of the same colour and three

pairs. Because D is trivalent one triple can enforce at most three non-rainbow faces.

So in this case there are at most 9 non-rainbow faces; again we have a contradiction.

3. Let |ϕ(X)| = 3. In this case we have in D either two triples and one pair of

vertices of the same colour or one quadruple and two pairs of vertices of the same

colours. In both cases there are in D at most 9 non-rainbow faces, a contradiction.

4. Let |ϕ(X)| 6 2. Analogously as above one can show that there are at most 11

non-rainbow faces in D, a contradiction. �
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3. Prisms

The n-sided prism Dn, i.e. the (4, 4, n)-polyhedron, n > 3, is a generalization of

the cube. It consists of the vertex set V = {a1, a2, . . . , an, b1, . . . , bn} and the edge

set E = {{ai, ai+1}∪ {bi, bi+1}∪ {ai, bi}, i = 1, . . . , n, indices modulo n}. The set of

faces of Dn consists of two n-gonal faces α = [a1a2 . . . an] and β = [b1b2 . . . bn] and

n quadrangles [aiai+1bi+1bi] for any i = 1, 2, . . . , n, indices modulo n.

Theorem 3.1. Let Dn be an n-sided prism, n > 3. Then

rb(Dn) =















3n

2
if n is even,

3n− 1

2
if n is odd.

P r o o f. Lower bounds.

1. Let n = 2k, k > 2. In this case D2k has 4k vertices and 2k + 2 faces. We

partition the face set of D2k into k +1 pairs of faces so that each pair πi of faces has

an edge ei in common. The edges e1, . . . , ek+1 create a matching. Now we colour the

vertices of D2k as follows. The vertices incident with the edge ei obtain the colour i.

So we have used k + 1 colours {1, 2, . . . , k + 1}. The remaining 4k − 2k − 2 = 2k − 2

vertices are coloured with colours k+2, . . . , 3k−1. It is easy to see that this colouring

with 3k− 1 colours do not force any rainbow face. Hence, in this case, rb(Dn) > 3k.

2. Let n = 2k + 1, k > 1. Then the following colouring ϕ gives the required lower

bound: ϕ(a1) = ϕ(b1) = 1, ϕ(a2i) = ϕ(b2i) = i for i = 1, . . . , k, ϕ(a2i+1) = k + i and

ϕ(b2i+1) = 2k + i for all i = 1, 2, . . . , k. Again rb(Dn) > 3k + 1 because there is no

rainbow face under this colouring.

U p p e r b o u n d s.

1. Let n = 2k. D2k contains a set S of k mutually disjoint quadrangles that

cover all vertices of D2k. Suppose there is a 3k-colouring ϕ of D2k such that there

is no rainbow quadrangle and no 2n-gonal rainbow face. This means that each

quadrangle from S has at most three different colours. Moreover, the colour sets

of different quadrangles from S are disjoint, otherwise we have a contradiction with

the number of colours used. Therefore on each quadrangle of S there are exactly

three colours. If any quadrangle has two non neighbouring vertices coloured with

the same colour, there is exactly one face that these vertices force not to be rainbow.

If on a quadrangle there is a monochromatic edge then this edge enforces another

neighbouring face not to be rainbow. Let us check what is the maximum number

of non-rainbow faces in D2k under the colouring ϕ. The quadrangular faces from S
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can cause that at most k other faces not in S are non-rainbow. Therefore there are

in D2k at most 2k non-rainbow faces, a contradiction because D2k has 2k + 2 faces

together.

2. Let n = 2k +1. D2k+1 contains 2k+3 faces and 4k +2 vertices. Suppose there

is a colouring ϕ of vertices of D2k+1 with
1

2
(3n− 1) = 3k +1 colours such that there

is no rainbow face there. It is easy to see that there is a set S of k quadrangular

faces that are mutually vertex disjoint and none of them contains any of the vertices

a2k+1 and b2k+1, which together with the edge a2k+1b2k+1 cover all vertices of the

prism D2k+1.

Let ϕ(a2k+1) = ϕ(b2k+1). It is easy to see that every quadrangle from S is coloured

exactly with three colours and the sets of colours used on two distinct quadrangles

of S are disjoint. These quadrangles together with the edge a2k+1b2k+1 provide

at most 2k + 2 non-rainbow faces and hence at least one face must be rainbow, a

contradiction.

If ϕ(a2k+1) 6= ϕ(b2k+1) then, analogously as above, we can show that at least

k − 1 quadrangles from S have vertices coloured with exactly three colours and at

most one is such that its vertices are coloured with exactly two colours which are

not on other quadrangles. The last one together with its neighbours can enforce at

most three non-rainbow faces. Hence in the (2k + 1)-prism D2k+1 there are at most

2(k − 1) + 3 = 2k + 1 non-rainbow faces. Because D2k+1 has exactly 2k + 3 faces, at

least two of them must be rainbow, a contradiction. �

4. Antiprisms

An n-sided antiprism An is the (3, 3, 3, n)-polyhedron defined as follows:

The vertex set is V (An) = {a1, a2, . . . , an, b1, b2, . . . , bn}, the edge set E(An) =

{{aiai+1}∪{bibi+1}∪{aibi}∪{aibi−1}, i = 1, . . . , n, indices modulo n}, the face set

of An consists of two n-gonal faces α and β and 2n triangular faces (triangles).

Theorem 4.1. Let n > 4 be an integer. Then

rb(An) = n.

P r o o f. The following colouring ϕ does not contain any rainbow face: ϕ(a1) =

ϕ(b1) = ϕ(an) = ϕ(bn) = 1, ϕ(ai) = ϕ(bi) = i for every i = 2, 3, . . . , n − 1. This

proves that rb(An) > n.

To prove the opposite inequality let us show first the following

C l a i m:

rb(A4) = 4.
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P r o o f. From the above we have rb(A4) > 4. Suppose there is a 4-colouring ϕ

of the vertices of A4 such that there is no rainbow face in A4. Consider two cases:

1. Each colour is used at least twice. As A4 has 8 vertices so each colour is

used exactly twice. Consider a 4-face α = [a1a2a3a4]. Without loss of generality

let ϕ(a1) = ϕ(a2) = 1 then ϕ(b4) = ϕ(b1) = 2 and ϕ(b2) ∈ {1, 2}, a contradiction.

If ϕ(a1) = ϕ(a3) = 1, then ϕ(a2) = 2 = ϕ(b1) and ϕ(b2) 6∈ {1, 2} and we have a

rainbow face [a2a3b2], a contradiction.

2. Let, without loss of generality, the colour 1 be used exactly once, i.e. let

ϕ(b1) = 1. Then ϕ(a1) = ϕ(a2) = ϕ(b2) = ϕ(b4) = 2. One of the colours 3 and 4

has to be used exactly once. Suppose (without loss of generality) ϕ(b3) = 3; then all

neighbours of b3 must be of the colour 2, a contradiction because the colour 4 is not

used. If ϕ(a3) or ϕ(a4) = 3 we again obtain a contradiction in an analogous way. �

Next, let n > 5. To prove the opposite inequality suppose that there is such a

surjective mapping ϕ : V → [1, n] that does not involve any rainbow face.

1. Let each colour from [1, n] be used at least twice. Because An has exactly

2n vertices each colour has to be used exactly two times. As α is not a rainbow

face there are on α two vertices x and y coloured with the same colour, say, n i.e.

ϕ(x) = ϕ(y) = n.

Observe that all neighbours of x have to be coloured with colour a or n and all

neighbours of y with colour b or n. As |N [x] ∪ N [y]| > 7 we immediately have a

contradiction. Here N [z] denotes a closed neighbourhood of the vertex z.

2. There is a colour, say n, which is used exactly once. Let this colour be used on

a vertex an of the face α, i.e. ϕ(an) = n. Clearly all vertices adjacent to an at An are

coloured with the same colour, say 1, i.e. ϕ(an−1) = ϕ(bn−1) = ϕ(bn) = ϕ(a1) = 1.

2.1. Let, without loss of generality, there be at least two colours on β that are

used at least twice or one colour that is used three times. Then if we delete vertices

an and bn and add edges bn−1b1, an−1a1 and a1bn−1 we obtain an antiprism An−1

whose vertices are coloured with n − 1 colours without any rainbow face. Next we

can repeat our consideration. In the end we get a contradiction because rb(A4) = 4.

2.2. Let, without loss of generality, there be exactly one colour on β that is

used precisely twice, all the other colours being used at most once at β. Because

of symmetry we can suppose that the same is true for the face α. This means that

colour 1 is used twice on α and two times on β. If there is another colour, say n− 1,

used exactly once at β and not used at α, then there must be another colour used

four times in the colouring ϕ on An and we have a contradiction. So any other colour

different from 1 and n is used exactly twice on An. So we have coloured at least

2(n − 2) + 4 + 1 = 2n + 1 vertices, a contradiction. �
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5. Archimedean solids

A description of Archimedean solids is very nicely elaborated in the book of

Cromwell [3]. The set of Archimedean solids consists of thirteen polyhedra:

1. the (3, 6, 6)-polyhedron known as the truncated tetrahedron,

2. the (3, 8, 8)-polyhedron, i.e. the truncated cube,

3. the (3, 10, 10)-polyhedron, i.e. the truncated dodecahedron,

4. the (4, 6, 6)-polyhedron, i.e. the truncated octahedron,

5. the (4, 6, 8)-polyhedron, i.e. the great rhomb-cub-octahedron,

6. the (4, 6, 10)-polyhedron, i.e. the great rhom-icosi-dodecahedron,

7. the (5, 6, 6)-polyhedron, i.e. the truncated icosahedron known also as the buck-

minster fulleren,

8. the (3, 4, 3, 4)-polyhedron, i.e. the cub-octahedron,

9. the (3, 4, 4, 4)-polyhedron, i.e. the rhomb-cub-octahedron,

10. the (3, 4, 5, 4)-polyhedron, i.e. the rhom-icosi-dodecahedron,

11. the (3, 5, 3, 5)-polyhedron, i.e. the icosi-dodecahedron,

12. the (3, 3, 3, 3, 4)-polyhedron, i.e. the snub cube,

13. the (3, 3, 3, 3, 5)-polyhedron, i.e. the snub dodecahedron.

In the theorems below we will write in brackets instead of the name of a polyhedron

the cyclic sequence that characterizes it.

Theorem 5.1.

(i) rb(3, 6, 6) = 9,

(ii) rb(3, 8, 8) = 17,

(iii) rb(3, 10, 10) = 41.

P r o o f. We prove only the case (iii). The cases (i) and (ii) can be done

analogously and we let them to the reader. Recall that the (3, 6, 6)-polyhedron

contains 12 vertices and 8 faces. The (3, 8, 8)-polyhedron has 24 vertices and 14

faces.

The (3, 10, 10)-polyhedron P has 60 vertices, 20 triangles and 12 decagons. To

establish the lower bound consider the set of face-disjoint pairs of triangle-dodeca-

hedrons having an edge in common. So we obtain twelve edges e1, . . . , e12. On any

of the remaining triangles we choose one edge. We obtain another set {e13, . . . , e20}

of edges. Notice that these two sets form a matching. Let us colour the endvertices

of the edge ei with colour i for every i ∈ [1, 20]. We colour the remaining 20 vertices

of P with colours 21, . . . , 40. Observe that no face under this colouring is rainbow.

To show that any 41-colouring of P enforces a rainbow face consider the set of all

triangles. These triangles cover all vertices of P . Because there are 20 triangles in
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this set and any colouring uses 41 colours so there must be one with three colours,

and we are done. �

Theorem 5.2.

(i) rb(4, 6, 6) = 18,

(ii) rb(4, 6, 8) = 36,

(iii) rb(4, 6, 10) = 90.

P r o o f. The idea of the proof is the same in all three cases. We will prove the

case (iii). The remaining two cases are left to the reader. The (4, 6, 10)-polyhedron

R consists of 120 vertices, 30 quadrangles, 20 hexagons and 12 decagons. Recall that

the (4, 6, 6)-polyhedron has 24 vertices and 14 faces. The (4, 6, 8)-polyhedron has 48

vertices and 26 faces.

A colouring giving the lower bound for the rainbowness is obtained as follows.

Partition the faces of R into face-disjoint pairs of faces having an edge in common.

As R is cubic and having 62 faces we obtain 31 pairs with common edges e1, . . . , e31.

These edges form a matching. Let us colour the end vertices of the edge ei with

the colour i for every i ∈ [1, 31]. The remaining 120 − 62 = 58 vertices are coloured

successively with different colours 32, . . . , 89. Clearly no face under this colouring is

rainbow.

To obtain the upper bound 90 we have to show that every vertex 90-colouring of

R enforces a rainbow face. Suppose there is a 90-colouring ϕ under which no face of

R is rainbow. Observe that the set of all quadrangular faces covers all vertices of R.

Because no quadrangle is rainbow the set of colours used at any quadrangle consists of

at most three colours. As ϕ uses 90 colours, the colour set of any quadrangle consists

of exactly three colours and, moreover, colour sets of distinct quadrangular faces are

disjoint. This means that any non-rainbow face which is not a quadrangle must be

incident with a monochromatic edge. The number of monochromatic edges is at most

30 but the number of non quadrangular faces is 32 and we have a contradiction. �

Theorem 5.3.

rb(5, 6, 6) = 45.

P r o o f. 1. The (5, 6, 6)-polyhedron M has 32 faces, twelve pentagons and

twenty hexagons. It has 60 vertices. The faces are paired into 16 mutually face-

disjoint pairs in such a way that each pair of faces shares an edge in common. M is

a cubic graph, therefore we obtain a set S = {e1, . . . , e16} of sixteen edges that form

a matching. The endvertices of the edge ei are coloured with the colour i for every

i ∈ [1, 16]. The remaining 60−32 = 28 vertices are coloured successively with colours

17, . . . , 44. The result is a 44-colouring ofM that does not contain any rainbow face.
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2. Next we show that any 45-colouring of M enforces a rainbow face. Suppose

that there is a 45-colouring of M having no rainbow face. The set of all twelve

pentagons covers all 60 vertices of M . Each pentagon contains at least two vertices

of the same colour. This means that there are at most 12 monochromatic edges

whose 24 endvertices are coloured with at most 12 colours. The remaining 36 ver-

tices are coloured with at least 33 colours. Hence there are at most 3 additional

monochromatic edges. Each monochromatic edge on a pentagon can enforce at most

one non-rainbow hexagon. But there are at most 3 monochromatic edges that can

enforce at most six additional non-rainbow hexagons. Altogether we have at most

18 non rainbow hexagons. But M has 20 hexagons, which means that there must be

at least one rainbow hexagon, a contradiction. �

Theorem 5.4.

rb(3, 4, 3, 4) = 6.

P r o o f. For a lower bound see colouring ϕ at Figure 5.1 where ϕ(a2) = 2,

ϕ(a4) = 3, ϕ(b1) = 4, ϕ(b3) = 5 and ϕ(x) = 1 for all other vertices x.

b1 b2

b3b4

c1

c2

c3

c4

a1 a2

a3a4

Figure 5.1

To prove the upper bound 6 suppose there is a vertex 6-colouring ϕ with no

rainbow face at (3, 4, 3, 4)-polyhedron

1. Let each colour be used at least (and hence exactly) twice. Without loss

of generality we can suppose that ϕ(a1) = ϕ(a2) = 1, ϕ(b1) = ϕ(c2) = 2. Then

ϕ(c1) = 3 and consequently ϕ(b4) = ϕ(a4) = 3, a contradiction.
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2. Let, without loss of generality, the colour 6 be used exactly once. Let ϕ(c2) = 6.

Then ϕ(a1) = ϕ(a2) = 1 and ϕ(b1) = ϕ(b2) = 2. This implies ϕ(c1) ∈ {1, 2} and

ϕ(c3) ∈ {1, 2}. So we have {3, 4, 5} ⊆ {ϕ(a3), ϕ(a4), ϕ(c4), ϕ(b3), ϕ(b4)} and one of

the faces [c1b4c4a4], [a3a4c4], [b3b4c4] or [a3c4b3c3], is rainbow, a contradiction. �

Theorem 5.5.

rb(3, 4, 4, 4) = 12.

P r o o f. In Figure 5.2 there is a graph of the (3, 4, 4, 4)-polyhedron R. Let for

the purposes of the proof the vertices of this (3, 4, 4, 4)-polyhedron be denoted in

accordance with Figure 5.2. The following 11-colouring ϕ provides no rainbow face

of R : ϕ(u1) = ϕ(u2) = ϕ(x1) = 5, ϕ(u6) = 6, ϕ(u3) = ϕ(u5) = ϕ(v3) = ϕ(v5) =

ϕ(w3) = ϕ(w5) = ϕ(x3) = ϕ(x5) = 1, ϕ(u4) = ϕ(x4) = 4, ϕ(v1) = ϕ(v2) = 7,

ϕ(v4) = 2, ϕ(v6) = 8, ϕ(w1) = ϕ(w2) = 9, ϕ(w4) = 3, ϕ(w6) = 10, ϕ(x2) = ϕ(x6) =

11. This gives the lower bound 11.

u4 v4

w4x4

u3

u5

u6

u2 v3

v5

v6

v2

w3

w5

w6

w2

x3

x5

x6

x2

u1 v1

w1x1

Figure 5.2

Suppose there is a surjective 12-colouring ϕ : V → [1, 12] such that no face of the

(3, 4, 4, 4)-polyhedron is rainbow.

Let U = {u1, v1, w1, x1} and X = {u2, u6, v2, v6, w2, w6, x2, x6} be sets of vertices

of the polyhedron R. Denote by K the subgraph of R induced on the vertex set

U ∪ X and by K ′ the subgraph induced on the remaining vertices of R. Evidently

K and K ′ are isomorphic. Let ϕ(K) denote the set of colours used at the vertices

of K. We say that an edge is monochromatic in X if the subgraph of R induced by
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X contains a monochromatic edge. It is easy to see that 5 6 |ϕ(K)| 6 7. First, we

prove four lemmas. �

Lemma 1. If |ϕ(K)| = 7 then X contains at most one monochromatic edge.

P r o o f. Let us first show that |ϕ(X)| > 6. Suppose that |ϕ(X)| 6 5. Then

there are two colours, say 6 and 7, that are not in ϕ(X). Then, without loss of

generality, let ϕ(u1) = 6 and 7 ∈ {ϕ(v1), ϕ(w1)}.

1. Let ϕ(v1) = 7. Then ϕ(u2) = ϕ(u6) = ϕ(v2) = ϕ(v6) = 1. The remaining four

colours 2, 3, 4 and 5 must be used at two triangles [w1w2w6] and [x1x2x6], exactly

two on each. Since ϕ({w1, w2, w3})∩ϕ({x1, x2, x3}) = ∅, the quadrangle [u1v1w1x1]

is rainbow, a contradiction.

2. Let ϕ(w1) = 7. Then ϕ(u2) = ϕ(u6) = 1 and ϕ(w2) = ϕ(w6).

2.1. If ϕ(w2) = 1 then, without loss of generality, ϕ({v1, v2, v6}) = {2, 3} and

ϕ({x1, x2, x6}) = {4, 5} and again [u1v1w1x1] is rainbow, a contradiction.

2.2. If ϕ(w2) 6= 1 then, without loss of generality, ϕ(w2) = 2 and ϕ({v1, v2, v6}) =

{3, 4}. But then either [u1v1v6u2] or [v1v2w6w1] is rainbow, a contradiction.

Suppose that there are at least two monochromatic edges in X . Because now

|ϕ(X)| = 6 there is exactly one colour, say 7, which is not in X . Let ϕ(u1) = 7.

Then ϕ(u2) = ϕ(u6) = 1. As the remaining five colours must be used as well we

have, without loss of generality, ϕ(v1) = ϕ(v6) = 2, ϕ(v2) = 3 and ϕ({x1, x2, x6}) =

{4, 5} or ϕ({w1, w2, w6}) = {4, 5}. In the first case ϕ(x1) = ϕ(x2) = 4, ϕ(x6) = 5

and ϕ(w1) ∈ {2, 4, 7}. Then, because of the second monochromatic edge in X ,

ϕ(w2) = ϕ(w6) = 6, a contradiction because one of the faces [v1v2w6w1], [w1w2x6x1]

is rainbow.

In the second case ϕ(w1) = ϕ(w6) = 4, ϕ(w2) = 5 and ϕ(x1) ∈ {2, 4, 7}, 6 ∈

{ϕ(x2), ϕ(x6)}. If ϕ(x2) = 6 then ϕ(x1) = 7 and, consequently, ϕ(x6) ∈ {5, 6}, a

contradiction because either [x1x2x6] or [x1w1w2x6] is rainbow. �

Lemma 2. If |ϕ(K)| = 6 then X contains at most three monochromatic edges.

P r o o f. First we show that |ϕ(X)| > 4. Clearly |ϕ(X)| > 3, otherwise the face

[u1v1w1x1] is rainbow. If |ϕ(X)| = 3 then |ϕ(U )| = 3 and ϕ(X) ∩ ϕ(U ) = ∅.

Let ϕ(X) = {1, 2, 3} and ϕ(U ) = {4, 5, 6}. Let, without loss of generality,

ϕ(u1) = 4, ϕ(v1) = 5, ϕ(w1) = 6. Then ϕ(u2) = ϕ(u6) = ϕ(v2) = ϕ(v6) =

ϕ(w2) = ϕ(w6) = 1, ϕ(x2) = 2, ϕ(x6) = 3 and one of the faces [x1x2x6], [u1v1w1x1]

is rainbow.

If |ϕ(X)| > 4 then there is nothing to prove. So let ϕ(X) = [1, 4] and there are

at least four monochromatic edges in X . Then there are two colours, say 5 and 6
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that are not present in ϕ(X). Suppose ϕ(u1) = 5. Then, without loss of generality,

6 ∈ {ϕ(v1), ϕ(w1)}.

1. If ϕ(v1) = 6 then, without loss of generality, ϕ(u2) = ϕ(u6) = ϕ(v2) =

ϕ(v6) = 1, ϕ(w1) = ϕ(w6) = 2, ϕ(w2) = 3 and consequently ϕ(x1) ∈ {2, 5, 6},

4 ∈ {ϕ(x2), ϕ(x6)}.

1.1. If ϕ(x2) = 4 then ϕ(x1) = 5, ϕ(x6) = 4 and the face [w1w2x6x1] is rainbow.

1.2. If ϕ(x6) = 4 then ϕ(x1) = 2, ϕ(x2) = 4 because of the fourth monochromatic

edge on X . Again a contradiction because of the face [u1u6x2x1] is rainbow.

2. If ϕ(w1) = 6 then, without loss of generality, ϕ(u2) = ϕ(u6) = 1 and ϕ(w2) =

ϕ(w6).

2.1. If ϕ(w2) = 1 = ϕ(w6) then, without loss of generality, {2, 3} ⊆ {ϕ(v1), ϕ(v2),

ϕ(v6)}. If ϕ(v1) 6= ϕ(v2) then [v1, v2, w1, w6] is rainbow. If ϕ(v1) 6= ϕ(v6) then

[u1u2v1v6] is rainbow.

2.2. If ϕ(w2) 6= 1, say ϕ(w2) = 2 = ϕ(w6) then, without loss of generality,

ϕ(v6) = 3 and ϕ(v1) ∈ {1, 3, 5}. If ϕ(v2) = 4 then [v1v2w6w1] is rainbow, a con-

tradiction. If ϕ(v2) 6= 4 then 4 ∈ {ϕ(x2), ϕ(x6)} and consequently ϕ(v2) = 2 and

ϕ(x2) = 1 or ϕ(x6) = 2 because of at least four monochromatic edges in X .

2.2.1. If ϕ(x2) = 1 then ϕ(x6) = 4 and either [w1w2x6x1] or [u1v1w1x1] is

rainbow.

2.2.2. If ϕ(x6) = 2 then ϕ(x2) = 4 and either [u1x1x2u6] or [u1v1w1x1] is rainbow.

�

Lemma 3. If |ϕ(K)| = 5 then X contains at most five monochromatic edges.

P r o o f. First we show that |ϕ(X)| > 3. If |ϕ(X)| = 2 then |ϕ(U )| = 3 and,

without loss of generality, ϕ(u1) = 1, ϕ(v1) = 2, ϕ(w1) = 3, ϕ(x1) ∈ {1, 2, 3},

ϕ(u2) = ϕ(u6) = ϕ(v2) = ϕ(v6) = ϕ(w2) = ϕ(w6) = 4, ϕ(x2) = ϕ(x6) = 5. Conse-

quently, at least one of the faces [u1x1x2u6] or [x1w1w2x6] is rainbow, a contradiction.

As the subgraph of R induced by the set X is a cycle on 8 vertices and the colour

set ϕ(X) has at least three colours, it is easy to see that there are at most five

monochromatic edges in X . �

Lemma 4. Let |ϕ(K)| = 7 and |ϕ(X)| = 6. Then there is a unique 7-colouring of

K (up to permutations of colours and symmetries of K), namely ϕ(u1) = 1, ϕ(u2) =

ϕ(u6) = 2, ϕ(v1) = ϕ(v6) = 3, ϕ(v2) = 4, ϕ(w1) = ϕ(w6) = ϕ(x1) = ϕ(x2) = 5,

ϕ(w2) = 6, and ϕ(x6) = 7.

P r o o f. Let Tu be a triangle [u1u2u6], let the triangles Tv, Tw and Tx are defined

analogously. Because |ϕ(X)| = 6 there must be at least one colour, say 1, that is not

in ϕ(X). Let, without loss of generality, ϕ(u1) = 1. Then seven colours of K must
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be distributed so that, without loss of generality, ϕ(Tu) = {1, 2}, ϕ(Tv) = {3, 4},

ϕ(Tw ∪Tx) ⊇ {5, 6, 7}. The straightforward case by case analysis shows the only the

case when no rainbow face appears in K is that one of the Lemma. �

Let C be the cycle induced by the vertices of the set X in R and let C′ be the

cycle induced by the set X ′ = {u5, u3, v5, v3, w5, w3, x5, x3}. Between cycles C and

C′ in R there is a set S of eight quadrangles. Next we show that at least one face of

S is rainbow. Because of Lemmas 1, 2 and 3 there are four cases.

1. Let |ϕ(K)| = |ϕ(K ′)| = 7. Then |ϕ(K) ∩ ϕ(K ′)| = 2 and there are three

monochromatic edges between C on S′ and no ones on C and C′ or at most two

monochromatic edges between C and C′, at most one on C and at most one on C′.

These monochromatic edges enforce at most six faces of S not to be rainbow. So at

least one face of S is rainbow.

2. Let |ϕ(K)| = 7 and |ϕ(K ′)| = 6 or |ϕ(K)| = 6 and |ϕ(K ′)| = 7. Then

|ϕ(K)∩ϕ(K ′)| = 1 and there are at most two monochromatic edges between C and

C′. These edges with at most four monochromatic edges that are together on C

and C′ can enforce at most seven faces of S not to be rainbow except the case when

|ϕ(K)| = 7 and |ϕ(X)| = 6 or |ϕ(K ′)| = 7 and ϕ(X ′) = 6. In these cases all faces

of S can appear not be rainbow. In these cases, due to Lemma 4, there is a unique

7-colouring of K or K ′, respectively. It is easy to see that every extension of this

7-colouring to a 12-colouring of the whole graph R leads to a rainbow face on R.

3. Let ϕ(K)| = 7 and |ϕ(K ′)| = 5 or |ϕ(K)| = 5 and |ϕ(K ′)| = 7. In this case

ϕ(K)∩ϕ(K ′) = ∅ and therefore there is no monochromatic edge between C and C′,

and on C ∪ C′ there are at most six monochromatic edges. These monochromatic

edges can enforce at most six faces not to be rainbow of the eight of S, a contradiction.

4. Let |ϕ(K)| = |ϕ(K ′)| = 6. In this case ϕ(K) ∩ ϕ(K ′) = ∅ and on C ∪ C′ there

are at most six monochromatic edges and therefore there are at most six non-rainbow

faces in S. Again a contradiction.

Theorem 5.6.

31 6 rb(3, 4, 5, 4) 6 35.

P r o o f. For the lower bound see Figure 5.3.

To prove the upper bound let us suppose that there exists a non-rainbow 35-

colouring ϕ of the (3, 4, 5, 4)-graph S. There are three possibilities of the distribution

of colours to the vertices of S when considering triangular faces of S.

1. 17 triangles T1, . . . , T17 with vertices of two colours having disjoint colour sets

ϕ(Ti) and ϕ(Tj) for distinct triangles Ti, Tj , i.e. ϕ(Ti) ∩ ϕ(Tj) = ∅; moreover, one

triangle T18 with one colour not contained in the previous triangles, and two triangles

T19 and T20 with colours already involved in the above mentioned triangles.
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2. 16 triangles T1, . . . , T16 with |ϕ(Ti)| = 2 for any i 6 16 and ϕ(Ti) ∩ ϕ(Tj) = ∅,

triangles T17,T18, T19 each having exactly one colour not appearing in other triangles

and a triangle T20 with colour(s) already contained in previous triangles.

3. 15 triangles T1, . . . , T15 with |ϕ(Ti)| = 2 for any i 6 15 and ϕ(Ti) ∩ ϕ(Tj) = ∅

and five triangles T16, . . . , T20 each having exactly one colour not appearing in any

of the triangles T1, . . . , T15.

For the purposes of this proof let us associate with S a new graph A(S) defined as

follows. The vertex set of A(S) is the set {T1, . . . , T20}. Two vertices Ti, Tj create

an edge TiTj in A(S) if in S the triangles Ti and Tj are separated by a quadrangular

face. It is easy to see that A(S) is isomorphic with the graph of the dodecahedron.

Furthermore there is a bijection between the sets of pentagons of A(S) and the

associated dodecahedron.

Consider now the third possibility. Let us call white the vertices of A(S) associated

with the triangles T1, . . . , T15, the other five let us call black. If there is a pentagon

in A(S) incident only with white vertices then the corresponding pentagon of S is

rainbow. The reason is that the triangles of S corresponding to two distinct vertices

have disjoint colour sets.
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If there is no pentagon incident only with white vertices in A(S) then there is a

configuration consisting of a black vertex x incident with three pentagons all other

vertices of which are white. Because the colour set of the triangle corresponding to

x consists of at most two colours and the colour sets of the triangles corresponding

to the remaining 9 vertices of this configuration are mutually disjoint, at least one

pentagon of S corresponding to a pentagon of the configuration is rainbow.

Analogously we proceed in the possibilities 1 and 2. In the first possibility the

graph A(S) consists of 17 white and three black vertices. In the second possibility

in A(S) there are 16 white and 4 black vertices. It is easy to find in each of these

cases at least one configuration considered above. �

Theorem 5.7.

14 6 rb(3, 5, 3, 5) 6 15.

P r o o f. Denote the (3, 5, 3, 5)-polyhedron by Q. For the lower bound see Fig-

ure 5.4. For the purposes of this proof we introduce a new notion. So let us call a

graph consisting of two triangles with a vertex in common a clock.
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Figure 5.4

Observe that there is a set of six clocks that cover all vertices of the graphQ. Let us

call them H1, . . . , H6 and denote the family of these graphs by H . The triangular

faces of Q that are not in the clocks from H form a family T = {T1, . . . , T8}

containing exactly eight triangles. Notice that any triangle T ∈ T shares a vertex

with exactly three members of H . We can now associate with Q a bipartite graph
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B with the vertex set H ∪ T . The edge HiTj exists in B if and only if Hi shares a

vertex with Tj.

To prove the upper bound let us consider a 15-colouring ϕ : V (Q) → [1, 15] that

enforces no rainbow face in Q. One can suppose (without loss of generality) that the

colours are distributed in H as follows. There are two possibilities:

1. ϕ(H1) = {1, 2, 3}, ϕ(H2) = {4, 5, 6}, ϕ(H3) = {7, 8, 9}, ϕ(H4) = {10, 11, 12},

ϕ(H5) = {13, 14} or {i, 13, 14} for some i 6 12, and ϕ(H6) = {15} or {k, 15} or

{j, k, 15} for some j 6 12 and k 6 14.

2. ϕ(H1), ϕ(H2) and ϕ(H3) are as above, ϕ(H4) = {10, 11} or {i, 10, 11} for some

i 6 9, ϕ(H5) = {12, 13} or {j, 12, 13} for some j 6 9, and finally ϕ(H6) = {14, 15}

or {k, 14, 15} for some k 6 9.

Consider first the possibility 1. If there is in B a vertex Tm adjacent to vertices

Hi, Hj and Hk for 1 6 i < j < k 6 4 then the triangle Tm is rainbow. If this is not

the case then the distance of H5 and H6 in B is dist(H5, H6) = 4 and H5 shares a

triangle with the pair Hi and Hi+1 for any i = 1, 2, 3, 4 (modulo 4). At least two

of them are rainbow because on the 2-valent vertices of H5 there are at least two

distinct colours.

2. If there is a vertex Tk in B adjacent to H1, H2 and H3 then Tk in Q is rainbow.

If it is not the case then without loss of generality the vertex H5 shares triangles

with the pair Hi and Hi+1 for every i = 1, 2, 3, 4 (modulo 4). Let these triangles be

T1, T2, T3 and T4. If none of T1 and T2 is rainbow (which means that i ∈ ϕ(H2))

then the triangle T3 is rainbow because colour on it is from {7, 8, 9}, the second is

from {10, 11} and the third one is either i ∈ {4, 5, 6} or from {12, 13}. �

Theorem 5.8.

rb(3, 3, 3, 3, 4) = 10.

P r o o f. For the purposes of the proof let the vertices of the (3, 3, 3, 3, 4)-

polyhedron be denoted as in Figure 5.5. The colouring ϕ which provides a 9-colouring

without a rainbow face is as follows: ϕ(u4) = 1, ϕ(v5) = 2, ϕ(w2) = 3, ϕ(x1) = 4,

ϕ(v1) = 5, ϕ(w4) = 6, ϕ(x5) = 7, ϕ(u2) = 8. The remaining vertices receive the

colour 9. So we have rb(3, 3, 3, 3, 4) > 10.

To obtain the opposite inequality suppose there is a 10-colouring ϕ of vertices that

also has no rainbow face.

For the purposes of this proof let K be the configuration induced in Figure 5.5

by the vertex set {u1, u2, u6, v1, v2, v6, w1, w2, w6, x1, x2, x6}. It consists of the quad-

rangle [u1v2w1x1] and 12 triangles. Let K ′ be the configuration induced by the re-

maining vertices of the (3, 3, 3, 3, 4)-polyhedron. Denote by Tu the triangle [u1u2u6],
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let the triangles Tv, Tw, Tx be defined analogously. Clearly 1 6 |ϕ(Ty)| 6 2 for any

y ∈ {u, v, w, x}.

Lemma 5.

|ϕ(K)| 6 5.

P r o o f. Suppose [1, 6] ⊆ ϕ(K). Because of the symmetries of K there are two

possibilities to consider:

1. Let |ϕ(Tu) ∪ ϕ(Tv)| = 4. Then without loss of generality let ϕ(Tu) = {1, 2},

ϕ(Tv) = {3, 4}. This implies that ϕ(u1) = ϕ(u2) = 1, ϕ(u6) = 2, ϕ(v1) = ϕ(v6) = 3,

ϕ(v2) = 4, ϕ(w6) ∈ {3, 4}, ϕ(x1) ∈ {1, 2}.

1.1. Let ϕ(x1) = 1, then ϕ(x2) ∈ {1, 2} and ϕ(x6) = 5 since otherwise {ϕ(w1),

ϕ(w2)} = {5, 6} and the face Tw is rainbow. This implies ϕ(w1) ∈ {1, 5}, ϕ(w2) = 6

and Tw is again rainbow, a contradiction.

1.2. Let ϕ(x1) = 2, then ϕ(w1) = 3, ϕ(x6) ∈ {2, 3} and at least one of Tx, Tw, or

[w1w2x6] is rainbow.

2. Let |ϕ(Tu)∪ϕ(Tv)| = 3 and |ϕ(Tu)∪ϕ(Tx)| = 3. Then without loss of generality

ϕ(Tu) = {1, 2}, ϕ(Tw) = {4, 5}, 3 ∈ ϕ(Tv) and 6 ∈ ϕ(Tx).

2.1. Let ϕ(u1) = ϕ(u2) = 1, ϕ(u6) = 2. Then ϕ(x1) ∈ {1, 2} and without loss of

generality ϕ(w1) = 4.
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2.1.1. If ϕ(w2) = 4, ϕ(w6) = 5 then ϕ(v1) ∈ {4, 5}, ϕ(v2) = 3 and consequently

ϕ(v1) = ϕ(v6) = 5 and ϕ(x1) = 1. Then ϕ(x2) = 6 or ϕ(x6) = 6. In the former case

the triangle [u6x1x2] is rainbow, in the latter the triangle [w1x1x6] is rainbow.

2.1.2. If ϕ(w2) = 5, ϕ(w6) ∈ {4, 5} then ϕ(x6) ∈ {4, 5}. Because now ϕ(x2) = 6

the triangle Tx is rainbow.

2.2. Let ϕ(u1) = 1 and ϕ(u2) = ϕ(u6) = 2. Then ϕ(v6) ∈ {1, 2}, ϕ(x1) ∈ {1, 2}.

Let ϕ(w1) = 4, then also 5 ∈ {ϕ(w2), ϕ(w6)}.

2.2.1. If ϕ(w2) = 5 then ϕ(x6) ∈ {4, 5} and ϕ(x2) = 6, and Tx is rainbow.

2.2.2. If ϕ(w6) = 5 then ϕ(v1) ∈ {4, 5} and ϕ(v2) = 3, and Tv is rainbow.

In all cases we have obtained a contradiction, hence |ϕ(K)| 6 5. �

As ϕ is a 10-colouring and the configurationK ′ is isomorphic toK, we have, due to

Lemma 5, ϕ(K) ∩ ϕ(K ′) = ∅ and |ϕ(K)| = |ϕ(K ′)| = 5. Let C be the cycle induced

by the vertex set X = {u2, u6, x2, x6, w2, w6, v2, v6} and C′ the cycle induced by the

vertex set Y = {u3, u5, x3, x5, w3, w5, v3, v5}. Between these two cycles there is a set

S of twelve faces altogether. As ϕ(X)∩ϕ(Y ) = ∅ the fact that the faces of S are not

rainbow must be caused by monochromatic edges on C and C′, one monochromatic

edge enforces one face of S not to be rainbow. As on the vertices of C (and above on

C′) there must be at least three colours there are at most five monochromatic edges

on C(C′). Because there are, in S, twelve faces we have a contradiction. �

Theorem 5.9.

19 6 rb(3, 3, 3, 3, 5) 6 30.

P r o o f. The snub dodecahedron, i.e. the (3, 3, 3, 3, 5)-polyhedron P has 60

vertices, 92 faces and 150 edges. Its graph is in Figure 5.6 where one can find a

18-colouring that involves no rainbow face. This shows rb(P ) > 19.

To prove the upper bound let us suppose that there is a surjective 30-colouring

ϕ of vertices of P that does not contain any rainbow face. For the purpose of this

proof let the configuration K be the set of all faces of the (3, 3, 3, 3, 5)-polyhedron

P that have a vertex in common with a given pentagonal face of P . Analogously to

the proof of Lemma 5 one can prove that for the set of colours that appear at the

vertices of K we have |ϕ(K)| 6 7.

Let the configuration R be a ring of 30 triangles of P bounded with two ver-

tex disjoint cycles Cx and Cy of length 15 on vertex sets {x1, x2, . . . , x15} and

{y1, y2, . . . , y15}. The edge set of R consists of the edges xjyj , xjxj+1, yjyj+1 for any

j ∈ [1, 15], indices modulo 15, x3i+2y3i+1, x3i+3y3i+2, x3i+3y3i+4 for i ∈ [0, 4], indices

modulo 15. Notice that R shares edges with 10 pentagonal faces of P , exactly two

with each of these pentagons. Let Di be a subgraph of R induced on the vertex set

{x3i+1, x3i+2, x3i+3, y3i+1, y3i+2, y3i+3}, i ∈ [0, 4]. It is easy to see that |ϕ(Di)| 6 4,
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Figure 5.6

|ϕ(Di∪Di+1)| 6 7, |ϕ(Di∪Di+1∪Di+2)| 6 10 and |ϕ(Di∪Di+1∪Di+2∪Di+3)| 6 13,

indices modulo 5. The colouring of Di+4 depends on the colourings of Di and Di+3.

In every possible case there are at most two additional colours in ϕ(Di+4). So we

have |ϕ(R)| 6 15.

To complete the proof of the theorem observe that there are three mutually vertex-

disjoint configurations, two configurations K and one configuration R that cover all

vertices of P . Because ϕ is a 30-colouring at least one of the above mentioned

configurations K or R must contain a rainbow face, a contradiction. �

6. One more semiregular polyhedron

There is one more (3, 4, 4, 4)-polyhedron that is not Archimedean. Its graph is

drawn in Figure 6.1. It was discovered by Ashkinuze [1], see also [5] or [6]. For this

polyhedron we are able to prove.

Theorem 6.1. Let A be the (3, 4, 4, 4)-polyhedron of Ashkinuze. Then

rb(A) = 12.
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P r o o f. In Figure 6.1 there is a 11-colouring of A without any rainbow face.

This yields rb(A) > 12.
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Figure 6.1

To show that rb(A) 6 12 we proceed in the same way as in the proof of Theo-

rem 5.5. Details are left to the reader. �
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