[1] F. W. Anderson and K. R. Fuller:
Rings and categories of modules. Springer-Verlag, New York, 1974.
MR 0417223
[2] A. W. Chatters and C. R. Hajarnavis:
Rings in which every complement right ideal is a direct summand. Quart. J. Math. Oxford. 28 (1977), 61–80.
DOI 10.1093/qmath/28.1.61 |
MR 0437595
[3] P. E. Bland:
Topics in torsion theory. Math. Research, Berlin, Wiley-VCH Verlag, p. 103, 1998.
MR 1640903 |
Zbl 0899.16013
[4] N. Viet Dung, D. Van Huynh, P. F. Smith and R. Wisbauer:
Extending modules. Longman, Harlow, 1994.
MR 1312366
[7] S. Doğruöz:
Classes of extending modules associated with a torsion theory. East-west J. Math. (2007), to appear.
MR 2442423
[8] K. R. Goodearl and R. B. Warfield: An introduction to noncommutative Noetherian rings. London Math. Society Student Texts 16 (1989).
[9] A. Harmanci and P. F. Smith:
Finite direct sums of CS-modules. Houston J. Math. 19 (1993), 523–532.
MR 1251607
[11] M. A. Kamal and B. J. Muller:
Extending modules over commutative domains. Osaka J. Math. 25 (1988), 531–538.
MR 0969016
[12] B. Stenström:
Rings of Quotients. Springer-Verlag: Berlin, 1975.
MR 0389953
[13] P. F. Smith, Ana M. de Viola-Prioli and Jorge E. Viola-Prioli:
Modules complemented with respect to a torsion theory. Communications in Algebra 25 (1997), 1307–1326.
DOI 10.1080/00927879708825921 |
MR 1437673