Previous |  Up |  Next

Article

Keywords:
torsion theory; extending module; closed submodule
Summary:
An $R$-module $M$ is said to be an extending module if every closed submodule of $M$ is a direct summand. In this paper we introduce and investigate the concept of a type 2 $\tau $-extending module, where $\tau $ is a hereditary torsion theory on $\mathop {\text{Mod}}$-$R$. An $R$-module $M$ is called type 2 $\tau $-extending if every type 2 $\tau $-closed submodule of $M$ is a direct summand of $M$. If $\tau _I$ is the torsion theory on $\mathop {\text{Mod}}$-$R$ corresponding to an idempotent ideal $I$ of $R$ and $M$ is a type 2 $\tau _I$-extending $R$-module, then the question of whether or not $M/MI$ is an extending $R/I$-module is investigated. In particular, for the Goldie torsion theory $\tau _G$ we give an example of a module that is type 2 ${\tau }_G$-extending but not extending.
References:
[1] F. W. Anderson and K. R. Fuller: Rings and categories of modules. Springer-Verlag, New York, 1974. MR 0417223
[2] A. W. Chatters and C. R. Hajarnavis: Rings in which every complement right ideal is a direct summand. Quart. J. Math. Oxford. 28 (1977), 61–80. DOI 10.1093/qmath/28.1.61 | MR 0437595
[3] P. E. Bland: Topics in torsion theory. Math. Research, Berlin, Wiley-VCH Verlag, p. 103, 1998. MR 1640903 | Zbl 0899.16013
[4] N. Viet Dung, D. Van Huynh, P. F. Smith and R. Wisbauer: Extending modules. Longman, Harlow, 1994. MR 1312366
[5] S. Doğruöz and P. F. Smith: Modules which are extending relative to module classes. Communications in Algebra 26 (1998), 1699–1721. DOI 10.1080/00927879808826233 | MR 1621723
[6] S. Doğruöz and P. F. Smith: Modules which are weak extending Relative to Module Classes. Acta Math. Hungarica 87 (2000), 1–10. DOI 10.1023/A:1006773431054 | MR 1755874
[7] S. Doğruöz: Classes of extending modules associated with a torsion theory. East-west J. Math. (2007), to appear. MR 2442423
[8] K. R. Goodearl and R. B. Warfield: An introduction to noncommutative Noetherian rings. London Math. Society Student Texts 16 (1989).
[9] A. Harmanci and P. F. Smith: Finite direct sums of CS-modules. Houston J. Math. 19 (1993), 523–532. MR 1251607
[10] S. G. Jonathan: Torsion theories. Longman Scientific and Technical, 1986. MR 0880019 | Zbl 0657.16017
[11] M. A. Kamal and B. J. Muller: Extending modules over commutative domains. Osaka J. Math. 25 (1988), 531–538. MR 0969016
[12] B. Stenström: Rings of Quotients. Springer-Verlag: Berlin, 1975. MR 0389953
[13] P. F. Smith, Ana M. de Viola-Prioli and Jorge E. Viola-Prioli: Modules complemented with respect to a torsion theory. Communications in Algebra 25 (1997), 1307–1326. DOI 10.1080/00927879708825921 | MR 1437673
[14] L. Zhongkui: On X-Extending and X-Continuous modules. Communications in Algebra 29 (2001), 2407–2418. DOI 10.1081/AGB-100002397 | MR 1845119 | Zbl 0983.16001
Partner of
EuDML logo