[3] R. O. L. Cignoli, I. M. L. D’Ottaviano and D. Mundici:
Algebraic Foundations of Many-Valued Reasoning. Kluwer Acad. Publ., Dordrecht-Boston-London, 2000.
MR 1786097
[5] A. Dvurečenskij: Every linear pseudo $BL$-algebra admits a state. Soft Computing (2006).
[6] A. Dvurečenskij and M. Hyčko:
On the existence of states for linear pseudo $BL$-algebras. Atti Sem. Mat. Fis. Univ. Modena e Reggio Emilia 53 (2005), 93–110.
MR 2199034
[7] A. Dvurečenskij and S. Pulmannová:
New Trends in Quantum Structures. Kluwer Acad. Publ., Dordrecht-Boston-London, 2000.
MR 1861369
[8] A. Dvurečenskij and J. Rachůnek: On Riečan and Bosbach states for bounded $Rl$-monoids. (to appear).
[9] A. Dvurečenskij and J. Rachůnek:
Probabilistic averaging in bounded $Rl$-monoids. Semigroup Forum 72 (2006), 190–206.
MR 2216089
[10] G. Georgescu and A. Iorgulescu:
Pseudo-$MV$-algebras. Multiple Valued Logic 6 (2001), 95–135.
MR 1817439
[11] A. di Nola, G. Georgescu and A. Iorgulescu:
Pseudo-$BL$-algebras I. Multiple Valued Logic 8 (2002), 673–714.
MR 1948853
[12] A. di Nola, G. Georgescu and A. Iorgulescu:
Pseudo-$BL$-algebras II. Multiple Valued Logic 8 (2002), 715–750.
MR 1948854
[13] P. Hájek:
Metamathematics of Fuzzy Logic. Kluwer, Amsterdam, 1998.
MR 1900263
[14] P. Jipsen and C. Tsinakis:
A survey of residuated lattices. Ordered algebraic structures (ed. J. Martinez), Kluwer Acad. Publ. Dordrecht, 2002, pp. 19–56.
MR 2083033
[15] T. Kovář: A General Theory of Dually Residuated Lattice Ordered Monoids. Ph.D. Thesis Palacký University, Olomouc, 1996.
[16] J. Kühr:
Dually Residuated Lattice Ordered Monoids. Ph.D. Thesis, Palacký Univ., Olomouc, 2003.
MR 2070377
[17] J. Kühr:
Remarks on ideals in lower-bounded dually residuated lattice-ordered monoids. Acta Univ. Palacki. Olomouc, Mathematica 43 (2004), 105–112.
MR 2124607
[18] J. Kühr:
Ideals of noncommutative ${\mathcal{D}}Rl$-monoids. Czech. Math. J. 55 (2002), 97–111.
MR 2121658
[20] J. Rachůnek:
$MV$-algebras are categorically equivalent to a class of $DRl_{1(i)}$-semigroups. Math. Bohem. 123 (1998), 437–441.
MR 1667115
[21] J. Rachůnek:
A duality between algebras of basic logic and bounded representable $DRl$-monoids. Math. Bohem. 126 (2001), 561–569.
MR 1970259
[23] J. Rachůnek and V. Slezák:
Bounded dually residuated lattice ordered monoids as a generalization of fuzzy structures. Math. Slovaca 56 (2006), 223–233.
MR 2229343
[24] J. Rachůnek and D. Šalounová:
Local bounded commutative residuated $l$-monoids. (to appear).
MR 2309973
[25] J. Rachůnek and F. Švrček: $MV$-algebras with additive closure operators. Acta Univ. Palacki., Mathematica 39 (2000), 183–189.
[26] F. Švrček:
Operators on $GMV$-algebras. Math. Bohem. 129 (2004), 337–347.
MR 2102608
[27] H. Rasiowa and R. Sikorski:
The Mathematics of Metamathematics. Panstw. Wyd. Nauk., Warszawa, 1963.
MR 0163850