[2] K. C. Chang:
Variational methods for nondifferentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl. 80 (1981), 102–129.
DOI 10.1016/0022-247X(81)90095-0 |
MR 0614246
[4] S. Hu and N. S. Papageorgiou:
Handbook of Multivalued Analysis. Volume I: Theory. Kluwer, Dordrecht, 1997.
MR 1485775
[5] S. Hu and N. S. Papageorgiou:
Handbook of Multivalued Analysis. Volume II: Applications. Kluwer, Dordrecht, 1997.
MR 1741926
[6] N. Kourogenis and N. S. Papageorgiou:
Nonsmooth critical point theory and nonlinear elliptic equations at resonance. J. Austral. Math. Soc. (Series A) 69 (2000), 245–271.
DOI 10.1017/S1446788700002202 |
MR 1775181
[7] N. Kourogenis and N. S. Papageorgiou:
Periodic solutions for quasilinear differential equations with discontinuous nonlinearities. Acta. Sci. Math. (Szeged) 65 (1999), 529–542.
MR 1737269
[9] J. Mawhin and M. Willem:
Critical Point Theory and Hamiltonian Systems. Springer-Verlag, Berlin, 1989.
MR 0982267
[10] Z. Naniewicz and P. Panagiotopoulos:
Mathematical Theory of Hemivariational Inequalities and Applications. Marcel Dekker, New York, 1994.
MR 1304257
[11] P. Rabinowitz:
Minimax Methods in Critical Point Theory with Applications to Differential Equations. Conference Board of the Mathematical Sciences, Regional Conference Series in Mathematics, No.45. AMS, Providence, 1986.
MR 0845785
[12] C. L. Tang:
Periodic solutions for nonautonomous second order systems with sublinear nonlinearity. Proc. AMS 126 (1998), 3263–3270.
MR 1476396 |
Zbl 0902.34036
[14] J. P. Aubin and H. Frankowska:
Set-Valued Analysis. Birkhäuser-Verlag, Boston, 1990.
MR 1048347