Previous |  Up |  Next

Article

Keywords:
integral multilinear forms; spaces of continuous functions; injective tensor product
Summary:
We use polymeasures to characterize when a multilinear form defined on a product of $C(K,X)$ spaces is integral.
References:
[1] R. C. Blei: Multilinear measure theory and the Grothendieck factorization theorem. Proc. London Math. Soc. 56 (1988), 529–546. MR 0931513
[2] F. Bombal: Medidas vectoriales y espacios de funciones continuas. Publicaciones del Departamento de Análisis Matemático. Fac. de Matemáticas, Universidad Complutense de Madrid, 1984.
[3] F. Bombal, I. Villanueva: Integral operators on  $C(K)$ spaces. J.  Math. Anal. Appl. 264 (2001), 107–121. DOI 10.1006/jmaa.2001.7648 | MR 1868331
[4] J. Diestel, J. J. Uhl: Vector Measures. Mathematical Surveys, No.  15. American Math. Soc., Providence, 1977. MR 0453964
[5] N. Dinculeanu: Vector Measures. Pergamon Press, Oxford-New York-Toronto, 1967. MR 0206190
[6] N. Dinculeanu, M. Muthiah: Bimeasures in Banach spaces. Preprint. MR 1849394
[7] I. Dobrakov: On integration in Banach spaces, VIII (polymeasures). Czechoslovak Math.  J. 37 (112) (1987), 487–506. MR 0904773 | Zbl 0688.28002
[8] I. Dobrakov: Representation of multilinear operators on $\times C_0 (T_i , X_i )$. I. Atti Sem. Mat. Fis. Univ. Modena XXXIX (1991), 131–138. MR 1111763
[9] B. Jefferies: Radon polymeasures. Bull. Austral. Math. Soc. 32 (1985), 207–215. DOI 10.1017/S0004972700009904 | MR 0815364 | Zbl 0577.28002
[10] B. Jefferies, W. Ricker: Integration with respect to vector valued radon polymeasures. J.  Austral. Math. Soc. (Series  A) 56 (1994), 17–40. DOI 10.1017/S1446788700034716 | MR 1250991
[11] P. Saab: Integral operators on spaces of continuous vector-valued measures. Proc. Amer. Math. Soc. 111 (1991), 1003–1013. DOI 10.1090/S0002-9939-1991-1039263-5 | MR 1039263
[12] I. Villanueva: Multilinear operators in spaces of continuous functions. Czechoslovak Math.  J 54 (129) (2004), 31–54. DOI 10.1023/B:CMAJ.0000027245.95757.ee | MR 2040217
Partner of
EuDML logo