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Abstract. In this paper we examine nonlinear periodic systems driven by the vectorial
p-Laplacian and with a nondifferentiable, locally Lipschitz nonlinearity. Our approach is
based on the nonsmooth critical point theory and uses the subdifferential theory for locally
Lipschitz functions. We prove existence and multiplicity results for the “sublinear” problem.
For the semilinear problem (i.e. p = 2) using a nonsmooth multidimensional version of
the Ambrosetti-Rabinowitz condition, we prove an existence theorem for the “superlinear”
problem. Our work generalizes some recent results of Tang (PAMS 126(1998)).
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1. Introduction

In two recent papers Tang [12], [13] obtained existence and multiplicity results
for semilinear nonautonomous periodic systems with a continuously differentiable

sublinear nonlinearity. More precisely, he studied the following problem:

(1)

{
x′′(t) = ∇ϕ(t, x(t)) a.e. on T = [0, b],

x(0) = x(b), x′(0) = x′(b).

Assuming that ϕ(t, x) is measurable in t ∈ T , continuously differentiable in x ∈� N , ‖ϕ(t, x)‖, ‖∇ϕ(t, x)‖ 6 α(‖x‖)c(t) a.e. on T with α ∈ C(
�

+ ), c ∈ L1(T )+,
‖∇ϕ(t, x)‖ 6 g(t) + f(t)‖x‖θ a.e. on T , with f, g ∈ L1(T )+, 0 6 θ < 1, and

lim
‖x‖→∞

(1/‖x‖2θ)
∫ b

0
ϕ(t, x) dt = ±∞, Tang proved that problem (1) has a solution

(see [12, Theorems 1 and 2]). Moreover, by imposing additional growth conditions
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on ϕ(t, x), he also proved multiplicity results for problem (1) (see [12, Theorems 3
and 4]). Similar results can be found in [13] but under more restrictive hypotheses on
ϕ(t, x). The results of Tang extend earlier ones obtained by Mawhin-Willem (see [9,
Section 4.3, pp. 85–87]).

The goal of this paper is to obtain extensions of the results of Tang to quasilinear
periodic systems driven by the vectorial p-Laplacian and having a nondifferentiable

potential. Such problems are also known as “hemivariational inequalities” and have
applications in mechanics and engineering (see [10]).

The problem under consideration is the following:

(2)

{
(‖x′(t)‖p−2x′(t))′ ∈ ∂ϕ(t, x(t)) a.e. on T = [0, b],

x(0) = x(b), x′(0) = x′(b), 2 6 p <∞.

Here the differential operator of the left-hand side is the vectorial p-Laplacian

∆px(t) = (‖x′(t)‖p−2 ·x′(t))′. The norm inside the parenthesis is the usual Euclidean
norm. This is the “ordinary” version of the partial differential operator ∆px =
div(‖Dx‖p−2Dx) when x defined on a bounded domain Z ⊆ � N with N > 2.
Also ϕ(t, ·) is locally Lipschitz on � N into

�
and ∂ϕ(t, x) denotes the generalized

subdifferential in the sense of Clarke [3] (see also Section 2). Our approach is based
on the nonsmooth critical point theory of Chang [2] (for extensions see [6]). For

the convenience of the reader in the next section we recall the main aspects of this
theory.

2. Mathematical background

The nonsmooth critical point theory of Chang [2] uses the subdifferential theory

of Clarke [3]. So let us start by briefly presenting the main aspects of this theory.
More details can be found in [3].

Let X be a Banach space and X∗ its topological dual. By ‖ ·‖ we denote the norm
of X , by ‖ · ‖∗ the norm of X∗ and by 〈·, ·〉 the duality brackets for the pair (X,X∗).
A function ϕ : X → �

is said to be locally Lipschitz if for every bounded open set
U ⊆ X , there exists kU > 0 such that |ϕ(x) − ϕ(y)| 6 kU‖x − y‖ for all x, y ∈ U .

Recall that if ψ : X → �
=
� ∪{+∞} is proper (i.e. not identically +∞), convex and

lower semicontinuous (i.e. ψ ∈ Γ0(X), see [4, p. 341]), then ψ is locally Lipschitz in
the interior of its effective domain domψ = {x ∈ X : ψ(x) < +∞}. Hence a convex�
-valued function on X is locally Lipschitz.
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Now given a locally Lipschitz function ϕ : X → �
, in analogy to the directional

derivative of a convex function, we define

ϕ0(x;h) = lim sup
y−→

λ↓0
x

ϕ(y + λh)− ϕ(y)
λ

for all y, h ∈ X.

This quantity is called the “generalized directional derivative” of ϕ at x ∈ X

in the direction h ∈ X . For every x ∈ � , the function h → ϕ0(x;h) is sublinear
continuous and so by the Hahn-Banach theorem it is the support function of a
nonempty, w∗-compact and convex set given by

∂ϕ(x) = {x∗ ∈ X∗ : 〈x∗, h〉 6 ϕ0(x;h) for all h ∈ X}.

So ϕ0(x;h) = sup{〈x∗, h〉 : x∗ ∈ ∂ϕ(x)} (i.e. ϕ0(x; ·) is the support function of
the set ∂ϕ(x)) and the multifunction ∂ϕ : X → 2X∗ \ {∅} is known as the (Clarke or
generalized) subdifferential of ϕ. This multifunction has a graph Gr ∂ϕ = {(x, x∗) ∈
X×X∗ : x∗ ∈ ∂ϕ(x)} which is sequentially closed inX×X∗

w∗. Here byX∗
w∗ we denote

the Banach space X∗ furnished with the w∗-topology. So if xn → x in X , x∗n
w∗
→ x∗

in X∗ and x∗n ∈ ∂ϕ(xn) for all n > 1, then x∗ ∈ ∂ϕ(x). If ϕ, ψ : X → �
are locally

Lipschitz functions, then ∂(ϕ+ψ)(x) ⊆ ∂ϕ(x)+∂ψ(x) and ∂(λϕ)(x) = λ∂ϕ(x) for all
x ∈ X and all λ ∈ � . If ϕ is in addition convex, then the subdifferential ∂ϕ coincides
with the subdifferential in the sence of convex analysis (see for example [5, p. 267]).
Finally, if ϕ is continuously Gateaux differentiable at x ∈ X , then ∂ϕ(x) = {ϕ′(x)}.
Let ϕ : X → �

be a locally Lipschitz function. In analogy with the smooth case,
we say that x ∈ X is a “critical point” of ϕ if 0 ∈ ∂ϕ(x). Then c = ϕ(x) is a “critical
value” of ϕ. It is easy to check that if x ∈ X is a local extremum (i.e. a local
minimum or maximum), then x is a critical point, i.e. 0 ∈ ∂ϕ(x). It is well-known
that the smooth critical point theory uses a compactness condition, known as the
Palais-Smale condition (PS-condition for short). In the present nonsmooth setting,

this condition takes the following form:

“A locally Lipschitz function ϕ : X → �
satisfies the nonsmooth Palais-Smale

condition at level c ∈ � (nonsmooth PSc-condition for short) if any sequence
{xn}n>1 ⊆ X such that ϕ(xn) → c and m(xn) = inf{‖x∗‖∗ : x∗ ∈ ∂ϕ(xn)} → 0
as n→∞, has a strongly convergent subsequence. If ϕ satisfies the nonsmooth
PSc-condition at every level c ∈

�
, we simply say ϕ satisfies the nonsmooth

PS-condition.”

If ϕ ∈ C1(X), then because ∂ϕ(x) = {ϕ′(x)} for all x ∈ X , we see that the notion
of the nonsmooth PS-condition coincides with the classical one (see [4]). Using this
compactness-type property of ϕ, we can state the following nonsmooth extension of

the classical “Saddle Point Theorem” (see [2]):
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Theorem 1. If X is a reflexive Banach space, X = Y ⊕ V with dimY <

+∞, ϕ : X → �
is locally Lipschitz, there exists R > 0 such that max{ϕ(y) :

y ∈ Y , ‖y‖ = R} < inf{ϕ(v) : v ∈ V }, and ϕ satisfies the nonsmooth PSc0-condition

where c0 = inf
γ∈Γ

max
y∈D

ϕ(γ(y)) with D = {y ∈ Y : ‖y‖ 6 R} and Γ = {γ ∈ C(D,X) :

γ(y) = y whenever ‖y‖ = R}, then c0 > inf
V
ϕ and c0 is a critical value of ϕ with

corresponding critical point x ∈ X . Moreover, if c0 = inf
V
ϕ, then there exists a

critical point x ∈ V of ϕ with c0 = ϕ(x).

Remark. A more general version of this theorem can be found in [6].

Another theorem that we shall need in the sequel is the following (see [2]):

Theorem 2. If X is a reflexive Banach space and ϕ : X → �
is locally Lipschitz

function which is bounded below and satisfies the nonsmooth PS-condition, then

inf
X
ϕ is attained at x ∈ X and x is a critical point of ϕ.

3. Existence theorems

In this section we prove three existence theorems for problem (1), thus generalizing
the work of Tang to the present quasilinear and nonsmooth setting.

For the first two theorems our hypotheses on the nonsmooth potential function
ϕ(t, x) are the following:

H(ϕ)1 ϕ : T × � N → �
is a function such that ϕ(·, 0) ∈ L1(T ) and

(i) for every x ∈ � N , t→ ϕ(t, x) is measurable;
(ii) for almost all t ∈ T , x→ ϕ(t, x) is locally Lipschitz;
(iii) for almost all t ∈ T , all x ∈ � N and all u ∈ ∂ϕ(t, x) we have

‖u‖ 6 α(t) + c(t)‖x‖θ

with α, c ∈ Lq(T )+, 1/p+ 1/q = 1 and 0 6 θ < p− 1;
(iv) one of the following two conditions holds:

(iv)1 (1/‖x‖θq)
∫ b

0
ϕ(t, x) dt→ −∞, as ‖x‖ → ∞, or

(iv)2 (1/‖x‖θq)
∫ b

0 ϕ(t, x) dt→ +∞, as ‖x‖ → ∞.

Remark. Our hypotheses are similar to those employed by Tang [12] in the
context of semilinear (i.e. p = 2) systems with a C1-potential ϕ(t, ·). So Theorems 4
and 5 below extend Theorems 1 and 2 of [12]. In what follows by H(ϕ)1,1 we shall
denote hypothesis H(ϕ)1 with (iv)1 in effect and by H(ϕ)1,2, with (iv)2 in effect.

When we simply write H(ϕ)1 then we mean the above hypotheses with either one of
(iv)1 or (iv)2 in effect.
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Let W 1,p
per(T,

� N ) = {x ∈ W 1,p(T,
� N ) : x(0) = x(b)} and let V : W 1,p

per(T,
� N ) →�

be the energy function defined by

V (x) =
1
p
‖x′‖p

p +
∫ b

0

ϕ(t, x(t)) dt.

We know that V is locally Lipschitz (see [5, p. 313]). Also by Φ̂ : Lp(T,
� N ) → �

we denote the integral functional Φ̂(x) =
∫ b

0
ϕ(t, x(t)) dt and Φ = Φ̂|W 1,p

per (T, � N) . Both

are locally Lipschitz.

Proposition 3. If hypotheses H(ϕ)1 hold, then V satisfies the nonsmooth PS-
condition.
� �"!#!%$

. Let {xn} ⊆W 1,p
per(T,

� N ) be a sequence such that

|V (xn)| 6 M1 for all n > 1 and m(xn) → 0 as n→∞.

Let x∗n ∈ ∂V (xn) such that m(xn) = ‖x∗n‖∗, n > 1. The existence of such
elements follows from the fact that ∂V (xn) ⊆ W 1,p

per(T,
� N )∗ is weakly compact

and the norm ‖ · ‖∗ is weakly lower semicontinuous. Also let A : W 1,p
per(T,

� N ) →
W 1,p

per(T,
� N )∗ be the nonlinear operator defined by

〈A(x), y〉 =
∫ b

0

‖x′(t)‖p−2(x′(t), y′(t)) � N dt for all x, y ∈W 1,p
per(T,

� N ).

Here by 〈·, ·〉 we denote the duality brackets for the pair (W 1,p
per(T,

� N ),W 1,p
per

(T,
� N )∗). It is easy to check (see for example [7]) that A is maximal monotone. We

have
x∗n = A(xn) + un with un ∈ ∂Φ(xn), n > 1.

Since W 1,p
per(T,

� N ) is embedded continuously (in fact compactly) and densely in
Lp(T,

� N ), from Theorem 2.2 of [2], we have that ∂Φ(xn) ⊆ Lq(T,
� N ) and so

un ∈ Lq(T,
� N ) for all n > 1. Moreover, we know that un(t) ∈ ∂ϕ(t, xn(t)) a.e. on T

(see [3, p. 76]).

We shall show that {xn}n>1 ⊆W 1,p
per(T,

� N ) is bounded. To this end, consider the
direct sum decomposition W 1,p

per(T,
� N ) =

� N ⊕ Y , where Y = {y ∈ W 1,p
per(T,

� N ) :∫ b

0
y(t) dt = 0}. Given x ∈ W 1,p

per(T,
� N ), we write x = x + x̂ with x ∈ � N and

x̂ ∈ Y (of course the decomposition is unique). From the choice of the sequence
{xn}n>1 ⊆W 1,p

per(T,
� N ) we have

(3) |〈A(xn), x̂n〉+ (un, x̂n)pq | 6 εn‖x̂n‖ with εn ↓ 0.
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Here by (·, ·)pq we denote the duality brackets for the pair (Lp(T,
� N ), Lq(T,

� N )),
i.e. (un, x̂n)pq =

∫ b

0 (un(t), x̂n(t)) � N dt. Using hypothesis H(ϕ)1(iii) we have that

(un(t), x̂n(t)) � N 6 (α(t) + c(t)‖xn + x̂n(t)‖θ)‖x̂n(t)‖(4)

6 α(t)‖x̂n(t)‖+ 2θ−1c(t)‖xn‖θ‖x̂n(t)‖
+ 2θ−1c(t)‖x̂n(t)‖θ+1 a.e. on T,

⇒
∣∣∣∣
∫ b

0

(un(t), x̂n(t)) � N dt
∣∣∣∣ 6 ‖α‖1‖x̂n‖∞ + 2θ−1‖c‖1‖x̂n‖θ+1

∞

+ 2θ−1‖c‖1

(ε
p
‖x̂n‖p

∞ +
1
εq
‖xn‖θq

)

6 β1‖x̂′n‖p + β2‖x̂′n‖θ+1
p + β3

ε

p
‖x̂′n‖p

p + β4(ε)‖xn‖θq

for ε > 0 and for some β1, β2, β3, β4(ε) > 0. Here we have used the Poincare-
Wirtinger inequality which says that for all v ∈ V , ‖v‖∞ 6 b1/q‖v′‖p (see [9, p. 8]).

Also note that 〈A(xn), x̂n〉 = ‖x̂′n‖p
p. So returning to (3) and using these facts, we

obtain

‖x̂′n‖p
p − β1‖x̂′n‖p − β2‖x̂′n‖θ+1

p − β3
ε

p
‖x̂′n‖p

p − β4(ε)‖xn‖θq 6 M2‖x̂n‖

for some M2 > 0 and all n > 1, hence

(5)
(
1− β3

ε

p

)
‖x̂′n‖p

p − (β1 +M3)‖x̂′n‖p − β2‖x̂′n‖θ+1
p 6 β4(ε)‖xn‖θq

for some M3 > 0 and all n > 1.
In obtaining the last inequality we have used once more the Poincare-Wirtinger

inequality. Choose ε > 0 small so that β3ε/p < 1. We claim that from (5) we can
infer that

(6) ‖x̂′n‖p−1
p 6 β5‖xn‖θ + β6 for some β5, β6 > 0 and n > 1.

Indeed, if {x̂n}n>1 ⊆W 1,p
per(T,

� N ) is bounded, this is clearly the case. Otherwise
suppose that ‖x̂′n‖p → ∞ (by the Poincare-Wirtinger inequality). So from (5) we
obtain

β7‖x̂′n‖p
p − β8‖x̂′n‖θ+1

p 6 β4(ε)‖xn‖θq for some β7, β8 > 0 and all n > 1.

Recall that θ + 1 < p. Using Young’s inequality with δ > 0 small on the term
β8‖x̂′n‖θ+1

p , we obtain that

β9‖x̂′n‖p
p 6 β4‖xn‖θq + β10 for some β9, β10 > 0 and all n > 1,

from which (6) follows.
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Let Sn(t) = {(u, λ) ∈ � N × (0, 1) : u ∈ ∂ϕ(t, xn + λx̂n(t)), ϕ(t, xn + x̂n(t)) −
ϕ(t, xn) = (u, x̂n(t)) � N}. From Lebourg’s mean value theorem (see [3, p. 41] and
[8]), we know that for almost all t ∈ T , Sn(t) 6= ∅. By redefining Sn on a Lebesgue-
null subset of T , we may assume without any loss of generality that Sn(t) 6= ∅ for all
t ∈ T . We claim that for every h ∈ � N , the function (t, λ) → ϕ0(t, xn + λx̂n(t);h)
is measurable on T × (0, 1). To this end, from the definition of the generalized
directional derivative (see Section 2), we have

ϕ0(t, xn + λx̂n(t);h)

= inf
m>1

sup
{ϕ(t, xn + λx̂n(t) + r + sh)− ϕ(t, xn + λx̂n(t) + r)

s
:

r ∈ & N ∩B1/m(0), s ∈ & ∩
(
0,

1
m

)}

where & N = & × & × . . . × & (Ntimes), B1/m(0) = {y ∈ � N : ‖y‖ < 1/m}. So it
follows that (t, λ) → ϕ0(t, xn + λx̂n(t);h) is measurable as claimed.
Set Gn(t, λ) = ∂ϕ(t, xn + λx̂n(t)) and let {hm}m>1 ⊆

� N be a dense sequence.
Exploiting the continuity of ϕ0(t, xn+λx̂n(t); ·), from the definition of the generalized
subdifferential (see Section 2), we have

GrGn =
⋂

m>1

{(t, λ, u) ∈ T × (0, 1)× � N : (u, hm) � N 6 ϕ0(t, xn + λx̂n(t);hm)}

⇒ GrGn ∈ L(T )×B(I)×B(
� N )

where L(T ) is the Lebesgue σ-field of T , I = (0, 1), and B(I), B(
� N ) are the

Borel σ-fields of I and
� N . Then we obtain GrSn ∈ L(T ) × B(I) × B(

� N ). So
we can apply the Yankon-von Neumann-Aumann selection theorem (see [4, p. 158]

or [14]) to obtain Lebesgue measurable maps un : T → � N and λn : T → I such
that (un(t), λn(t)) ∈ Sn(t) for all t ∈ T and all n > 1. So we have

V (xn) =
1
p
‖x′n‖p

p +
∫ b

0

ϕ(t, xn(t)) dt

=
1
p
‖x̂′n‖p

p +
∫ b

0

ϕ(t, xn + x̂n(t)) dt−
∫ b

0

ϕ(t, xn) dt+
∫ b

0

ϕ(t, xn) dt

=
1
p
‖x̂′n‖p

p +
∫ b

0

(un(t), x̂n(t)) � N dt+
∫ b

0

ϕ(t, xn) dt,

un(t) ∈ ∂ϕ(t, xn + λn(t)x̂n(t)) a.e. on T.

From the choice of the sequence {xn}n>1 ⊆ W 1,p
per(T,

� N ), we have |V (xn)| 6 M1

for all n > 1. First suppose that hypothesis H(ϕ)1(iv)1 holds. We have

−M1 6 1
p
‖x̂′n‖p

p +
∫ b

0

(un(t), x̂n(t)) � N dt+
∫ b

0

ϕ(t, xn) dt.
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Using (4) with ε = 1, we obtain

−M1 6 β11‖x̂′n‖p
p + β1‖x̂′n‖p + β2‖x̂′n‖θ+1

p + β4‖xn‖θq +
∫ b

0

ϕ(t, xn) dt,

with β11 = β1 + 1/p, β4 = β4(ε). By virtue of (6) and since p− 1 = p/q, we have

−M1 6 β12‖xn‖θq + β13‖xn‖θq/p + β14‖xn‖θ(θ+1)/(p−1) +
∫ b

0

ϕ(t, xn) dt+ β15

for some β12, β13, β14, β15 > 0 and all n > 1.
Note that θq/p, θ(θ + 1)/(p− 1) < θq (recall that θ < p − 1). Suppose that

{xn}n>1 ⊆
� N was unbounded. So by passing to a subsequence if necessary, we may

assume that ‖xn‖ → ∞ as n→∞ and that ‖xn‖ > 1 for all n > 1. Then we have

−M1 6 ‖xn‖θq

(
β16 +

1
‖xn‖θq

∫ b

0

ϕ(t, xn) dt+
β15

‖xn‖θq

)

for some β16 > 0 and all n > 1.
Since we have assumed that H(ϕ)1(iv) holds, from the last inequality we reach a

contradiction. This proves the boundedness of {xn}n>1 and then by virtue of (6) we

have also the boundedness of {xn}n>1 ⊆W 1,p
per(T,

� N ).
Next assume that the hypothesis H(ϕ)1(iv)2 is in effect. As before, we have

V (xn) 6 M1 for all n > 1

⇒ 1
p
‖x̂′n‖p

p − β1‖x̂′n‖p − β2‖x̂′n‖θ+1
p − β3

ε

p
‖x̂′n‖p

p − β4(ε)‖xn‖θq

+
∫ b

0

ϕ(t, xn) dt 6 M1 (see (4))

⇒
(1
p
− β3

ε

p

)
‖x̂′n‖p

p − β1‖x̂′n‖p − β2‖x̂′n‖θ+1
p − β4(ε)‖xn‖θq

+
∫ b

0

ϕ(t, xn) dt 6 M1.

Choose ε > 0 so that ε < 1/β3. From the last inequality we have

β17‖x̂′n‖p
p − β1‖x̂′n‖p − β2‖x̂′n‖θ+1

p + ‖xn‖θq

(
1

‖xn‖θq

∫ b

0

ϕ(t, xn)− β4(ε)
)

6 M1

for some β17 > 0 and all n > 1.
If {x̂′n}n>1 ⊆ Lp(T,

� N ) is unbounded, then we may assume that ‖x̂′n‖ → ∞ and
so from (6) we also have ‖xn‖ → ∞. Since θ < p − 1 and hypothesis H(ϕ)1(iv)2
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is in effect, from the last inequality we have a contradiction. Therefore {x̂′n}n>1 ⊆
Lp(T,

� N ) is bounded. Suppose that ‖xn‖ → ∞. Then again from the last inequality
and since hypothesis H(ϕ)1(iv)2 is in effect, we have a contradiction. Therefore we
conclude that {xn}n>1 ⊆W 1,p

per(T,
� N ) is bounded.

Thus we have proved that in both situations (H(ϕ)1(iv)1 and H(ϕ)1(iv)2), the
sequence {xn}n>1 ⊆ W 1,p

per(T,
� N ) is bounded. So by passing to a subsequence if

necessary, we may assume that xn
w→ x in W 1,p

per(T,
� N ) and xn → x in C(T,

� N )
(recall that W 1,p

per(T,
� N ) is embedded compactly in C(T,

� N )). We have

〈A(xn), xn − x〉+ (un, xn − x)pq 6 εn‖xn − x‖ 6 εnβ18

for some β18 > 0 and with εn ↓ 0.
Since un ∈ ∂Φ(xn) ⊆ ∂Φ̂(xn), n > 1, and {xn}n>1 ⊆ Lp(T,

� N ) is relatively
compact, it follows that {un}n>1 ⊆ Lq(T,

� N ) is bounded and so (un, xn−x)pq → 0
as n→∞.
Thus we have

lim sup
n→∞

〈A(xn), xn − x〉 6 0.

But because A is maximal monotone, it is generalized pseudomonotone (see [4,

p. 365]) and so we have

〈A(xn), xn〉 → 〈A(x), x〉
⇒ ‖x′n‖p → ‖x′‖p.

Recall that x′n
w→ x′ in Lp(T,

� N ) and the space Lp(T,
� N ), being uniformly

convex, has the Kadec-Klee property (see [4, p. 28]). So x′n → x′ in Lp(T,
� N ) and

it follows that xn → x in W 1,p
per(T,

� N ). Therefore we have proved that V satisfied
the nonsmooth PS-condition. �

Now we can have the first existence theorem for problem (2).

Theorem 4. If hypotheses H(ϕ)1,1 hold, then problem (2) has a solution

x ∈ C1(T,
� N ).

� �"!#!%$
. Recall that W 1,p

per(T,
� N ) =

� N ⊕ Y with Y = {y ∈ W 1,p
per(T,

� N ) :∫ b

0 y(t) dt = 0}.
Let y ∈ Y . As in the proof of Proposition 3, we can find u ∈ Lq(T,

� N ) and
λ : T → (0, 1) Lebesgue measurable such that u(t) ∈ ∂ϕ(t, λ(t)y(t)) and ϕ(t, y(t)) −
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ϕ(t, 0) = (u(t), y(t)) � N a.e. on T . We have

V (y) =
1
p
‖y′‖p

p +
∫ b

0

ϕ(t, y(t)) dt

=
1
p
‖y′‖p

p +
∫ b

0

(ϕ(t, y(t)) − ϕ(t, 0)) dt+
∫ b

0

ϕ(t, 0) dt

=
1
p
‖y′‖p

p +
∫ b

0

(u(t), y(t)) � N dt+
∫ b

0

ϕ(t, 0) dt

> 1
p
‖y′‖p

p − ‖u‖1‖y‖∞ +
∫ b

0

ϕ(t, 0) dt

> 1
p
‖y′‖p

p − β19‖y′‖θ+1
p − β20

for some β19, β20 > 0.

In the last inequality we have used hypothesis H(ϕ)1(iii) and the Poincare-
Wirtinger inequality. Since θ < p− 1, from the last inequality and since ‖y′‖p is an

equivalent norm on Y (by the Poincare-Wirtinger inequality), we can conclude that
V is coercive on Y .

Let c ∈ � N . Then from hypothesis H(ϕ)1(iv)1 we have that V (c) =
∫ b

0
ϕ(t, c) dt→

−∞ as ‖c‖ → ∞. So V is anti-coercive on � N . These properties of V together with
Proposition 3 permit the use of Theorem 1, which gives us x ∈ W 1,p

per(T,
� N ) such

that 0 ∈ ∂V (x). We have A(u) = −u with u ∈ Lq(T,
� N ) and u(t) ∈ ∂ϕ(t, x(t))

a.e. on T (i.e. u ∈ ∂Φ(x) ⊆ ∂Φ̂(x) ⊆ Lq(T,
� N )). For every h ∈ C∞

0 (T,
� N ) we have

〈A(x), h〉 = (−u, h)pq

⇒
∫ b

0

‖x′(t)‖p−2(x′(t), h′(t)) � N dt =
∫ b

0

(−u(t), h(t)) � N dt.

From the definition of the distributional derivative we have

(‖x′(t)‖p−2x′(t))′ = u(t) ∈ ∂ϕ(t, x(t)) a.e. on T, with x(0) = x(b).

From this it follows that ‖x′(·)‖p−2x′(·) ∈ W 1,q(T,
� N ) ⊆ C(T,

� N ). Since the
map µ :

� N → � N defined by µ(x) = ‖x‖p−2x is a homeomorphism, we have that
x′ ∈ C(T,

� N ). Then for every v ∈ W 1,p
per(T,

� N ) from Green’s identity (integration
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by parts), we have that
∫ b

0

((‖x′(t)‖p−2x′(t))′, v(t)) � N dt

= ‖x′(b)‖p−2(x′(b), v(b)) � N − ‖x′(0)‖p−2(x′(0), v(0)) � N

−
∫ b

0

‖x′(t)‖p−2(x′(t), v′(t)) � N dt

⇒
∫ b

0

(u(t), v(t)) � N dt

= ‖x′(b)‖p−2(x′(b), v(b)) � N − ‖x′(0)‖p−2(x′(0), v(0)) � N − 〈A(x), v〉
⇒ ‖x′(0)‖p−2(x′(0), v(0)) � N = ‖x′(b)‖p−2(x′(b), v(b)) � N

for all v ∈W 1,p
per(T,

� N ).
Let z = (zm)N

m=1 ∈ � N be such that zi = 1 for some i ∈ {1, . . . , N} and
zm = 0 for m 6= i. Let v ∈ W 1,p

per(T,
� N ) be such that v(0) = v(b) = z. We ob-

tain ‖x′(0)‖p−2x′i(0) = ‖x′(b)‖p−2x′i(b). Since i ∈ {1, . . . , N} was arbitrary we have
that ‖x′(0)‖p−2x′(0) = ‖x′(b)‖p−2x′(b) and so finally x′(0) = x′(b). Therefore we
have that x ∈ C1(T,

� N ) is a solution of (2). �
The second existence result is the following:

Theorem 5. If hypotheses H(ϕ)1,2 hold, then problem (2) has a solution

x ∈ C1(T,
� N ).

� �"!#!%$
. In this case for every x ∈ W 1,p

per(T,
� N ) we have (see the proof of

Proposition 3)

V (x) =
1
p
‖x′‖p

p +
∫ b

0

ϕ(t, x(t)) dt

=
1
p
‖x̂′‖p

p +
∫ b

0

(ϕ(t, x+ x̂(t))− ϕ(t, x)) dt+
∫ b

0

ϕ(t, x) dt

=
1
p
‖x̂′‖p

p +
∫ b

0

(u(t), x̂(t)) � N dt+
∫ b

0

ϕ(t, x) dt

(u(t) ∈ ∂ϕ(t, x+ λ(t)x̂(t)) a.e. on T )

> 1
p
‖x̂′‖p

p − β1‖x̂′‖p − β2‖x̂′‖θ+1
p − β3

ε

p
‖x̂′‖p

p − β4(ε)‖x‖θq

+
∫ b

0

ϕ(t, x) dt (see (4))

=
1
p
(1− β3ε)‖x̂′‖p

p − β1‖x̂′‖p − β2‖x̂′‖θ+1
p

+ ‖xn‖θq

(
1

‖xn‖θq

∫ b

0

ϕ(t, x) dt− β4(ε)
)
.
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Choose ε < 1/β3 and recall that θ < p − 1. It follows that V is coercive (hence
bounded below). So we can apply Theorem 2 and obtain x ∈W 1,p

per(T,
� N ) such that

0 ∈ ∂V (x). As in the proof of Theorem 4 we can show that x ∈ C1(T,
� N ) and that

it solves (2). �

Next we present a third existence theorem, in which we assume a stronger growth

condition on ∂ϕ(t, x) which implies that ϕ(t, ·) is globally Lipschitz (hence it has a
sublinear growth), but we weaken the hypothesis H(ϕ)1(iv).

H(ϕ)2 ϕ : T × � N → �
is a function such that ϕ(·, 0) ∈ L1(T ) and

(i) for every x ∈ � N , t→ ϕ(t, x) is measurable;
(ii) for almost all t ∈ T, x→ ϕ(t, x) is locally Lipschitz;
(iii) there exists α ∈ Lq(T )+ such that for almost all t ∈ T , all x ∈ � N

and all u ∈ ∂ϕ(t, x) we have

‖u‖ 6 α(t);

(iv) lim
||x||→∞

∫ b

0
ϕ(t, x) dt = −∞.

Remark. By virtue of the Lebourg mean value theorem and hypothesis
H(ϕ)2(iii) we have that for almost all t ∈ T and all x, y ∈ � N , |ϕ(t, x) − ϕ(t, y)| 6
α(t)‖x− y‖, i.e. for almost all t ∈ T , ϕ(t, ·) is actually globally Lipschitz.

We consider the Lipschitz continuous energy functional V : W 1,p
per(T,

� N ) → �
defined by

V (x) =
1
p
‖x′‖p

p +
∫ b

0

ϕ(t, x(t)) dt.

Proposition 6. If hypotheses H(ϕ)2 hold, then V satisfies the nonsmooth PS-
condition.
� �"!#!%$

. Let {xn}n>1 ⊆W 1,p
per(T,

� N ) be a sequence such that

|V (xn)| 6 M1 for all n > 1 and m(xn) → 0 as n→∞.

Let x∗n ∈ ∂V (xn) be such that ‖x∗n‖∗ = m(xn), n > 1, and let A : W 1,p
per(T,

� N ) →
W 1,p

per(T,
� N )∗ be as in the proof of Proposition 3. We have x∗n = A(xn) + un with

{un}n>1 ⊆ Lq(T,
� N ) and un(t) ∈ ∂ϕ(t, xn(t)) a.e. on T .

We consider the decomposition xn = xn + x̂n with xn ∈
� N , x̂n ∈ Y for all n > 1.

We have

〈A(xn), x̂n〉+ (un, x̂n)p,q 6 εn‖x̂n‖ with εn ↓ 0

⇒ ‖x̂′n‖p
p +

∫ b

0

(un(t), x̂n(t)) � N dt 6 εn‖x̂n‖ ⇒ ‖x̂′n‖p
p 6 εn‖x̂n‖+ ‖α‖1‖x̂n‖∞.
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Using the Poicare-Wirtinger inequality, we obtain

‖x̂′n‖p
p 6 β1‖x̂′n‖p for some β1 > 0 and all n > 1

⇒ {x̂n}n61 ⊆W 1,p
per(T,

� N ) is bounded.

As in the proof of Proposition 3 we can find u∗n ∈ Lq(T,
� N ) and λn : T →

(0, 1) Lebesgue measurable such that u∗n(t) ∈ ∂ϕ(t, xn + λn(t)x̂n(t)) a.e. on T and
ϕ(t, xn + x̂n(t))−ϕ(t, xn) = (u∗n(t), x̂n(t)) � N a.e. on T for all n > 1. Then from the
choice of the sequence {xn}n>1 ⊆W 1,p

per(T,
� N ) we have

−M1 6 V (xn) =
1
p
‖x′n‖p

p +
∫ b

0

ϕ(t, xn(t)) dt

=
1
p
‖x̂′n‖p

p +
∫ b

0

(ϕ(t, xn(t)) − ϕ(t, xn)) dt+
∫ b

0

ϕ(t, xn) dt

=
1
p
‖x̂′n‖p

p +
∫ b

0

(u∗n(t), x̂n(t)) � N dt+
∫ b

0

ϕ(t, xn) dt

6 1
p
‖x̂′n‖p

p + ‖α‖1‖x̂n‖∞ +
∫ b

0

ϕ(t, xn) dt.

Since {x̂n}n>1 ⊆W 1,p
per(T,

� N ) is bounded and using the Poincare-Wirtinger inequal-
ity, we obtain

(7) −M2 6
∫ b

0

ϕ(t, xn) dt for some M2 > 0 and all n > 1.

Suppose that {xn}n>1 ⊆ W 1,p
per(T,

� N ) is unbounded. Then because {x̂n}n>1 ⊆
W 1,p

per(T,
� N ) is bounded we conclude that {xn} ⊆

� N is unbounded. So we may
assume that ‖xn‖ → ∞. From this, (7) and hypothesis H(ϕ)2(iv), we reach a
contradiction. This shows that {xn}n>1 ⊆ W 1,p

per(T,
� N ) is bounded and so we may

say that xn
w→ x in W 1,p

per(T,
� N ). The argument in the proof of Theorem 4 applies

here too and gives that xn → x in W 1,p
per(T,

� N ). Therefore we conclude that V
satisfies the nonsmooth PS-condition. �

Next we show that V is coercive on Y = {y ∈ W 1,p
per(T,

� N ) :
∫ b

0 y(t) dt = 0}.

Proposition 7. If hypotheses H(ϕ)2 hold, then V (y) → +∞ as ‖y‖ → ∞, y ∈ Y .
� �"!#!%$

. We proceed by contradiction. Suppose that the proposition was not

true. Then we can find {yn}n>1 ⊆ Y such that ‖yn‖ → ∞ and V (yn) 6 M3 for
some M3 > 0 and all n > 1. Set zn = yn/‖yn‖, n > 1. By passing to a subsequence
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if necessary, we may assume that zn
w→ z in W 1,p

per(T,
� N ) and zn → z in C(T,

� N ).
We have

1
p
‖y′n‖p

p +
∫ b

0

ϕ(t, yn(t)) dt 6 M3 for all n > 1,(8)

⇒ 1
p
‖z′n‖p

p +
∫ b

0

ϕ(t, yn(t))
‖yn‖p

dt 6 M3

‖yn‖p
for all n > 1.

From hypothesis H(ϕ)2(iii) and Lebourg’s mean value theorem, for almost all t ∈ T
and all x ∈ � N we have

|ϕ(t, x)| 6 α1(t) + c1(t)‖x‖ with α1 ∈ L1(T ), c1 ∈ Lq(T ).

So we have

|ϕ(t, yn(t))|
‖yn‖p

6 α1(t)
‖yn‖p

+
c1(t)

‖yn‖p−1
‖zn(t)‖ → 0 a.e. on T.

Using this in (8), in the limit as n→∞ we obtain

‖z′‖p = 0, i.e. z = ξ ∈ � N and ξ = 0 since z ∈ V.

Therefore we have that z′n → 0 in Lp(T,
� N ), hence zn → 0 in W 1,p

per(T,
� N ), a

contradiction because ‖zn‖ = 1 for all n > 1. �

Proposition 8. If hypotheses H(ϕ)2 hold, then problem (2) has a solution x ∈
C1(T,

� N ).
� �"!#!%$

. By virtue of hypothesis H(ϕ)(iv), we have that V (c) → −∞ as
‖c‖ → ∞, c ∈ � N . This combined with Propositions 6 and 7 permits the use

of Theorem 1 which gives us x ∈ W 1,p
per(T,

� N ) such that 0 ∈ ∂V (x). Working as in
the proof of Theorem 4, we show that x ∈ C1(T,

� N ) and that it solves problem (2).
�

Remark. A simple example of a nonsmooth potential function satisfying hy-
potheses H(ϕ)2 is ϕ(t, x) = sin ‖x‖ − h(t)‖x‖ with h ∈ L1(T )+. Then

∂ϕ(t, x) =

{
(cos ‖x‖ − h(t))x/‖x‖ if x 6= 0,

(cos ‖x‖ − h(t))B1 if x = 0,

with B1 = {x ∈ � N : ‖x‖ 6 1}. Also note that
∫ b

0 ϕ(t, c) dt 6 b − ‖c‖ ‖h‖1 → −∞
as ‖c‖ → ∞. Thus we satisfy hypotheses H(ϕ)2.
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An example of a function ϕ(t, x) satisfying hypotheses H(ϕ)1 with p = 3 is the
function ϕ(t, x) = 1

2h(t)(‖x‖2−d2
C(x))+‖x‖ ln(‖x‖+2), with dC being the distance

function from C ⊆ � N , a nonempty compact and convex set, and h ∈ L2(T ). Then

∂ϕ(t, x) =




h(t)pC(x) +

x

‖x‖ ln(‖x‖+ 2) +
x

‖x‖+ 2
if x 6= 0,

h(t)pC(0) + ln 2B1 if x = 0.

Here pC is the metric projection on C. Clearly ϕ(t, x) satisfies H(ϕ)1,1 if∫ b

0 h(t) < 0 and H(ϕ)1,2 if
∫ b

0 h(t) > 0.

4. Multiplicity results

First we prove a multiplicity result for problems with a smooth potential ϕ(t, x).
So the hypotheses on ϕ(t, x) are the following:

H(ϕ)3 ϕ : T × � N → �
is a function such that

(i) for all x ∈ � N , t→ ϕ(t, x) is measurable;
(ii) for almost all t ∈ T, x→ ϕ(t, x) is a C1-function;

(iii) for almost all t ∈ T , and all x ∈ � N we have

‖∇ϕ(t, x)‖ 6 α(t) + c(t)‖x‖θ

with α, c ∈ Lq(T )+, 0 6 θ < p− 1;
(iv) (1/‖x‖θq)

∫ b

0 ϕ(t, x) dt→ +∞ as ‖x‖ → ∞, x ∈ � N ;

(v) lim
x→0

ϕ(t, x)/‖x‖p = 0 uniformly for almost all t ∈ T ;
(vi) there exists δ̂ > 0 such that for almost all t ∈ T and all x ∈ � N with

‖x‖ 6 δ̂ we have ϕ(t, x) 6 0, and there exists c ∈ � N such that for

almost all t ∈ T , ϕ(t, c) < 0.

Proposition 9. If hypotheses H(ϕ)3 hold, then problem (2) has two distinct
nonzero solutions in C1(T,

� N ).
� �"!#!%$

. Let V : W 1,p
per(T,

� N ) → �
be the smooth (i.e. C1) energy functional

defined by

V (x) =
1
p
‖x′‖p

p +
∫ b

0

ϕ(t, x(t)) dt.

We already know from Proposition 3 that V satisfies the PS-condition, while from

the proof of Theorem 5 we also know that V is coercive, hence it is bounded below.
Moreover, by virtue of hypothesis H(ϕ)3(vi) we have that inf V < 0. Also hypothesis
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H(ϕ)3(v) implies that given ε > 0, we can find δ = δ(ε) > 0 such that for almost all
t ∈ T and all x ∈ � N with ‖x‖ 6 δ we have

ϕ(t, x) > −ε
p
‖x‖p.

Let y ∈ Y with ‖y′‖p 6 δ/b1/q. Recall that ‖y‖∞ 6 b1/q‖y′‖p 6 δ. So for y ∈ Y

with ‖y‖ = (‖y‖p
p + ‖y′‖p

p)
1/p 6 δ/b1/q = δ1, we have ‖y‖∞ 6 δ and so we can write

that

V (y) =
1
p
‖y′‖p

p +
∫ b

0

ϕ(t, y(t)) dt

> 1
p
‖y′‖p

p −
ε

p
‖y‖p

p

> 1
p

(
1− ε

β1

)
‖y′‖p

p for some β1 > 0

by the Poincare-Wirtinger inequality.

So if we choose 0 < ε < β1, we have that V (y) > 0 for all y ∈ Y with ‖y‖ 6 δ1.
In addition by virtue of hypothesis H(ϕ)3(vi), we can find δ2 > 0 such that if x ∈� N ⊆W 1,p

per(T,
� N ) and ‖x‖ 6 δ2, then we have V (x) 6 0. Choose δ3 = min{δ1, δ2}.

We have

V (y) > 0 for all y ∈ Y with ‖y‖ 6 δ3

and

V (y) 6 0 for all y ∈ � N with ‖y‖ 6 δ3.

Hence we can apply Theorem 4 of [1] and obtain two distinct nonzero critical points

of V . We check that these are the two distinct nonzero solutions in C1(T,
� N ) of

problem (2). �

Remark. Tang [12] proves multiplicity results for the semilinear (i.e. p = 2),
smooth problem (see Theorems 3 and 4 in [12]). In Theorem 3 he proves the existence

of two distinct solutions, one via the “Saddle Point Theorem” and the second via
the “Linking Theorem” (see [11], Theorem 5.29). However, there is no guarantee

that the critical points are distinct. In Theorem 4 he proves the existence of three
distinct solutions. Two are obtained via the Brezis-Nirenberg Theorem and the third

through a minimizer of the energy functional. Again three is no guarantee that the
third solution is distinct from the other two. In fact we can also obtain a third

solution via the Saddle Point Theorem but there is no guarantee that it is distinct
from the other two.
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The next multiplicity result concerns problems with nonsmooth potential (hemi-

variational inequalities). The hypotheses on the potential function are the following:

H(ϕ)4 ϕ : T × � N → �
is a function such that ϕ(·, 0) ∈ L1(T ) and

(i) for every x ∈ � N , t→ ϕ(t, x) is measurable;
(ii) for almost all t ∈ T, x→ ϕ(t, x) is locally Lipschitz;
(iii) for almost all t ∈ T , all x ∈ � N and all u ∈ ∂ϕ(t, x) we have

‖u‖ 6 α(t) + c(t)‖x‖θ

with α, c ∈ Lq(T )+ and 0 6 θ < p− 1;
(iv) there exists 0 < γ < 2p3p/2/(bpp) such that for almost all t ∈ T and

all x ∈ � N , −γ‖x‖p 6 ϕ(t, x);
(v) (1/‖x‖θq)

∫ b

0 ϕ(t, x) dt→ +∞ as ‖x‖ → +∞, x ∈ � N ;

(vi) lim sup
‖x‖→0

∫ b

0 ϕ(t, x) dt < 0.

We have the following multiplicity result for problem (2).

Theorem 10. If hypotheses H(ϕ)4 hold, then problem (2) has two distinct solu-
tions in C1(T,

� N ).
� �"!#!%$

. Let V : W 1,p
per(T,

� N ) → �
be the locally Lipschitz energy functional

defined by

V (x) =
1
p
‖x′‖p

p +
∫ b

0

ϕ(t, x(t)) dt.

From Proposition 3 we know that V satisfies the nonsmooth PS-condition, while

from the proof of Theorem 5 we know that V is bounded below. So by Theorem 2 we
can find x1 ∈W 1,p

per(T,
� N ) such that V (x1) = inf V . Then 0 ∈ ∂V (x1) and from this

as before we obtain that x1 ∈ C1(T,
� N ) and that it is a solution of (2). Moreover,

by virtue of hypothesis H(ϕ)4(vi) we have that V (x1) < 0.
Next, again from hypothesis H(ϕ)4(vi), we can find δ > 0 such that for all x ∈ � N

with ‖x‖ = δ we have
∫ b

0 ϕ(t, x) dt < 0, hence V (x) < 0. On the other hand for every
y ∈ Y , by virtue of hypothesis H(ϕ)4(vi) we have

V (y) =
1
p
‖y′‖p

p +
∫ b

0

ϕ(t, y(t)) dt > 1
p
‖y′‖p

p − γ‖y‖p
p.

Note that ‖y‖p
p 6 b‖y‖p

∞. Moreover, from the Sobolev inequality (see [9, p. 9]) we

have

‖y‖∞ 6 b1/2

2
√

3
‖y′‖2 6 b1/2

2
√

3
bp−2/2p‖y′‖p ⇒ ‖y‖p

∞ 6 bp−1

2p3p/2
‖y′‖p

p.
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So we have

V (y) > 1
p
‖y′‖p

p − γ
bp−1

2p3p/2
‖y′‖p

p > 0 (see hypothesis H(ϕ)4(iv)).

Therefore we can apply Theorem 1 (the nonsmooth Saddle Point Theorem) and
obtain x2 ∈ W 1,p

per(T,
� N ) such that 0 ∈ ∂V (x2) and V (x2) > 0. From the first

relation we obtain that x2 ∈ C1(T,
� N ) and that it is a solution of (2), while from

the inequality V (x2) > 0 it follows that x2 6= x1. �

5. The nonsmooth semilinear problem

In this section we prove an existence theorem for the nonsmooth semilinear

(i.e. p = 2) problem under a nonsmooth, multidimensional version of the well-known
Ambrosetti-Rabinowitz condition (see [11, p. 9]). So in this section the problem

under consideration is the following:

(9)

{
x′′(t) ∈ ∂ϕ(t, x(t)) a.e. on T,

x(0) = x(b), x′(0) = x′(b).

Our proof is based on the following generalization of the nonsmooth “Mountain

Pass Theorem” (see [2] and [6]). The smooth version of this abstract result is due
to [11, Theorem 5.3, p. 28].

Theorem 11. If X is a reflexive Banach space, X = Z ⊕ Y with dimZ < +∞,
V : X → �

is locally Lipschitz, satisfies the nonsmooth PS-condition and the follow-

ing conditions hold

(i) there exist r, α > 0 such that for all y ∈ Y with ‖y‖ = r we have V (y) > α,

(ii) there exist e ∈ ∂B1 ∩ Y (B1 = {x ∈ X : ‖x‖ < 1}) and R > r such that if

Q = {z ∈ Z : ‖z‖ 6 R} ⊕ {λe : 0 < λ < R}, then V |∂Q 6 0 with ∂Q being the
boundary of Q in Z ⊕ � e,

then c = inf
γ∈Γ

max
u∈Q

V (γ(u)) where Γ = {γ ∈ C(Q,X) : γ|∂Q = identity} is a critical
value of V with critical point x ∈ X and c > α. Moreover, if c = α, then x ∈ V .
� �"!#!%$

. Using [11, Proposition 5.9] (which is still valid in the present nonsmooth

setting), for every γ ∈ Γ we have

γ(Q) ∩ ∂Br ∩ Y 6= ∅ (Br = {x ∈ X : ‖x‖ < r}) ⇒ c > α.
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Next we show that c is a critical value of V . Suppose that this was not true. Using

the nonsmooth deformation theorem [2, Theorem 3.1], we can find ε ∈ (0, α/2) and
ξ : X → X a homeomorphism such that

ξ(x) = x for all x /∈
{
u ∈ X : |V (u)− c| < α

2

}
and(10)

V (ξ(x)) 6 c− ε for all x ∈ X with V (x) 6 c+ ε.(11)

From the minimax definition of c, we can find γ ∈ Γ such that

(12) max{V (γ(u)) : u ∈ Q} 6 c+ ε.

Let g = ξ ◦ γ ∈ C(Q,X). From hypothesis (ii) and (10), we obtain that g ∈ Γ.
Then from (11) and (12) we have that c 6 c − ε, a contradiction. Finally if c = α,
then clearly x ∈ Y . �

Using this minimax principle, we can obtain an existence theorem for problem (9)

under a generalized Ambrosetti-Rabinowitz condition of ϕ(t, x). More precisely our
hypotheses on ϕ(t, x) are the following:
H(ϕ)5 ϕ : T × � N → �

is a function such that ϕ(·, 0) ∈ L2(T ) and
(i) for every x ∈ � N , t→ ϕ(t, x) is measurable;
(ii) for almost all t ∈ T, x→ ϕ(t, x) is locally Lipschitz;
(iii) for every % > 0 there exists θ% ∈ L2(T ) such that for almost all t ∈ T , all

x ∈ � N with ‖x‖ 6 % and all u ∈ ∂ϕ(t, x) we have ‖u‖ 6 θ%(t);
(iv) there exist η > 2 andM > 0 such that for almost all t ∈ T and all x ∈ � N with

‖x‖ > M we have
ϕ0(t, x;x) 6 ηϕ(t, x) < 0;

(v) for almost all t ∈ T and all x ∈ � N with ‖x‖ 6 1, we have −6/b2 6 ϕ(t, x) and
for all x ∈ � N ,

∫ b

0 ϕ(t, x) dt < 0.

Remark. Hypothesis H(ϕ)5(iv) is the nonsmooth multidimensional version of the
Ambrosetti-Rabinowitz condition.

Theorem 12. If hypotheses H(ϕ)5 hold, then problem (9) has a nonconstant
solution x ∈ C1(T,

� N ).
� �"!#!%$

. First we show that for almost all t ∈ T and all x ∈ � N we have

(13) ϕ(t, x) 6 α1(t)− α2(t)‖x‖η with α1, α2 ∈ L2(T )+.

Let N0 be the Lebesgue-null set outside which hypotheses H(ϕ)5(ii), (iii), (iv) hold
and let t ∈ T \N0, x ∈

� N , ‖x‖ > M . We set ψ(t, λ) = ϕ(t, λx), λ > 1. Evidently
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ψ(t, ·) is locally Lipschitz. Moreover, from [3, Theorem 2.3.10, p. 45] (chain rule II),
we have that ∂ψ(t, λ) ⊆ (∂xϕ(t, λx), x) � N , hence

λ∂ψ(t, λ) ⊆ (∂xϕ(t, λx), λx) � N

⇒ λψ′(t, λ) 6 ηψ(t, λ) for almost all λ > 1 (hypothesis H(ϕ)5(iv))

⇒ η

λ
6 ψ′(t, λ)

ψ(t, λ)
for almost all λ > 1.

Integrating from 1 to λ0 we obtain

lnλη
0 6 ln

ψ(t, λ0)
ψ(t, 1)

⇒ ψ(t, λ0) 6 λη
0ψ(t, 1).

So we have proved that for t ∈ T \N0, ‖x‖ > M and λ > 1 we have

ϕ(t, λx) 6 ληϕ(t, x).

We have ϕ(t, x) = ϕ
(
t, ‖x‖M−1Mx‖x‖−1) 6

(
‖x‖/M

)η
ϕ
(
t,Mx/‖x‖

)
. Let ξ(t) =

max{ϕ(t, y) : ‖y‖ = M}. Clearly ξ ∈ L2(T ) and we have that for all t ∈ T \N0 and
all ‖x‖ > M

(14) ϕ(t, x) 6
(‖x‖
M

)η

ξ(t).

For t ∈ T \N0, ϕ(t, ·) is bounded on BM (0) = {x ∈ � N : ‖x‖ 6 M}. Therefore
because ξ 6 0 from (14) we infer that (13) holds.
Let V : W 1,2

per(T,
� N ) → �

be the locally Lipschitz energy functional defined by

V (x) =
1
2
‖x′‖2

2 +
∫ b

0

ϕ(t, x(t)) dt.

Claim 1. V satisfies the nonsmooth PS-condition.

To this end let {xn}n>1 ⊆W 1,2
per(T,

� N ) be a sequence such that

|V (xn)| 6 M1 for all n > 1 and m(xn) → 0 as n→∞.

Let x∗n ∈ ∂V (xn) such that m(xn) = ‖x∗n‖∗, n > 1. Let A : W 1,2
per(T,

� N ) →
W 1,2

per(T,
� N )∗ be the monotone continuous (hence maximal monotone) linear op-

erator defined by 〈A(x), y〉 =
∫ b

0 (x′(t), y′(t)) � N dt, where 〈·, ·〉 denotes the duality
brackets for the pair (W 1,2

per(T,
� N ),W 1,2

per(T,
� N )∗). We have x∗n = A(xn) + un, with
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un ∈ L2(T,
� N ), un(t) ∈ ∂ϕ(t, xn(t)) a.e. on T , n > 1. From the choice of the

sequence {xn}n>1 ⊆W 1,2
per(T,

� N ) we have that

η

2
‖x′n‖2

2 +
∫ b

0

ηϕ(t, xn(t)) dt 6 M1η(15)

and

−‖x′n‖2
2 −

∫ b

0

(un(t), xn(t)) � N dt 6 εn‖xn‖, where εn ↓ 0.(16)

Adding (15) and (16), we obtain

(η
2
− 1

)
‖x′n‖2

2 +
∫ b

0

(ηϕ(t, xn(t))− (un(t), xn(t))) � N dt 6 M1η + εn‖xn‖,(17)

(η
2
− 1

)
‖x′n‖2

2 +
∫ b

0

(ηϕ(t, xn(t))− ϕ0(t, xn(t);xn(t))) dt 6 M1η + εn‖xn‖.

Note that

∫ b

0

(ηϕ(t, xn(t))− ϕ0(t, xn(t);xn(t))) dt(18)

=
∫

{‖xn(t)‖<M}
(ηϕ(t, xn(t))− ϕ0(t, xn(t);xn(t))) dt

+
∫

{‖xn(t)‖>M}
(ηϕ(t, xn(t))− ϕ0(t, xn(t);xn(t))) dt.

By virtue of hypothesis H(ϕ)5(iii), we see that there exists β1 > 0 such that

(19) −β1 6
∫

{‖xn(t)‖<M}
(ηϕ(t, xn(t))− ϕ0(t, xn(t);xn(t))) dt for all n > 1.

Also from hypothesis H(ϕ)5(iv) we have

(20) 0 6
∫

{‖xn(t)‖>M}
(ηϕ(t, xn(t))− ϕ0(t, xn(t);xn(t))) dt.

Using (19) and (20) in (18), we obtain

(21) −β1 6
∫ b

0

(ηϕ(t, xn(t)) − ϕ0(t, xn(t);xn(t))) dt.

Using (21) in (17) we obtain

(22)
(η

2
− 1

)
‖x′n‖2

2 6 β2(1 + ‖xn‖) for some β2 > 0 and all n > 1.
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From (22), we shall establish that {xn}n>1 ⊆ W 1,2
per(T,

� N ) is bounded. Suppose
that this is not the case. We may assume that ‖xn‖ → ∞. Let yn = xn/‖xn‖,
n > 1. By passing to a subsequence if necessary, we may assume that yn

w→ y in
W 1,2

per(T,
� N ) and yn → y in C(T,

� N ) as n→∞. Divide (22) by ‖xn‖2. We have

(η
2
− 1

)
‖y′n‖2

2 6 β2

( 1
‖xn‖2

+
1

‖xn‖
)
,

⇒
(η

2
− 1

)
‖y′‖2

2 6 0 (recall that since yn
w→ y in L2(T,

� N ),

‖y′‖2
2 6 lim inf

n→∞
‖y′n‖2

2),

⇒ y′ = 0, i.e. y = c ∈ � N (recall η > 2) and yn → c in W 1,2
per(T,

� N ).

We have xn = xn + x̂n and yn = yn + ŷn with yn = xn/‖xn‖ and ŷn = x̂n/‖xn‖,
n > 1. Hence ŷn = x̂n/‖xn‖ → 0 in W 1,2

per(T,
� N ) and yn = xn/‖xn‖ → c in

� N

as n → ∞. Suppose that c = 0. Then yn → 0 in W 1,2
per(T,

� N ), a contradiction
since ‖yn‖ = 1 for all n > 1. So c 6= 0. This means that for all t ∈ T we have
‖xn(t)‖ → ∞ as n → ∞. In fact we claim that the convergence is uniform on T ,
i.e. min

t∈T
‖xn(t)‖ → ∞ as n → ∞. To this end, since yn → c in C(T,

� N ), given

0 < ε < ‖c‖ we can find n0 > 1 such that for all n > n0 and t ∈ T , we have

‖yn(t)− c‖ < ε⇒ 0 < ‖c‖ − ε < ‖yn(t)‖.

Because ‖xn‖ → ∞, given β3 > 0, we can find n1 > 1 such that for all n > n1 we
have

‖xn‖ > β3 > 0.

So for n > n2 = max{n0, n1} and for t ∈ T , we have

‖xn(t)‖
β3

> ‖xn(t)‖
‖xn‖

> ‖yn(t)‖ > ‖c‖ − ε = θ > 0

⇒ ‖xn(t)‖ > θβ3 for all n > 1 and all t ∈ T.

Since β3 > 0 was arbitrary and θ > 0, we conclude that min
t∈T

‖xn(t)‖ → ∞ as

n → ∞. So without any loss of generality we may assume that ‖xn(t)‖ > 0 for all
n > 1 and all t ∈ T . Then from the choice of the sequence {xn}n>1 ⊆ W 1,2

per(T,
� N )
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we have

− 2M1

‖xn‖2
6 ‖y′n‖2

2 +
∫ b

0

2ϕ(t, xn(t))
‖xn‖2

dt,

⇒ − 2M1

‖xn‖2
6 ‖y′n‖2

2 +
∫ b

0

2ϕ(t, xn(t))
‖xn(t)‖2

‖yn(t)‖2 dt

⇒ − 2M1

‖xn‖2
6 β4 +

∫ b

0

2α1(t)− 2α2(t)‖xn(t)‖η

‖xn(t)‖2
‖yn(t)‖2 dt,

for some β4 > 0 and all n > 1 (see (13)).
Passing to the limit as n → ∞ and since η > 2 and min

t∈T
‖xn(t)‖ → ∞, we obtain

a contradiction (0 6 −∞). Therefore {xn}n>1 ⊆ W 1,2
per(T,

� N ) is bounded and so
we may assume that xn

w→ x in W 1,2
per(T,

� N ). Arguing as before, we can show that
xn → x in W 1,2

per(T,
� N ), which proves Claim 1.

Now in order to eventually apply Proposition 11, we consider the following cylinder

set:

CR =
{
x ∈ W 1,2

per(T,
� N ) : x(t) = c+ λ

√
b

π
√

2
e1 cos

2π
b
t,

c ∈ � N , ‖c‖ 6 R, 0 6 λ 6 R
}

with e1 = (1, 0, . . . , 0) ∈ � N . The number R > 0 will be determined in the sequel.
For x ∈ CR we have

V (x) =
1
2
λ2 +

∫ b

0

ϕ(t, x(t)) dt.

Claim 2. For R > 0 large, we have V |∂CR 6 0.

For x on the lower base (i.e. λ = 0) of the cylinder CR, we have x = ξ ∈ � N and

V (x) =
∫ b

0

ϕ(t, ξ) dt < 0 (since ϕ < 0 by hypothesis H(ϕ)5).

Note that if x ∈ CR, we have

∫ b

0

‖x(t)‖2 dt = b‖c‖2 + λ2.

Also because of (13) for every x ∈ CR we have

∫ b

0

ϕ(t, x(t)) dt 6 β5 − β6‖x‖η
η 6 β7 − β8‖x‖η

2 for some β5, β6, β7, β8 > 0.

369



Thus for x ∈ CR we can write that

V (x) =
λ2

2
+

∫ b

0

ϕ(t, x(t)) dt 6 λ2

2
− β8(b‖c‖2 + λ2)η/2 − β7.

So for x ∈ CR on the lateral boundary ‖c‖ = R and the upper base λ = R of the

cylinder we have

V (x) 6 R2

2
− β8bR

η + β7.

Since η > 2, choose R > 0 large enough we shall have

V |∂CR 6 0,

which proves Claim 2.

Next let E = {y ∈ Y : ‖y′‖2 = 2
√

3/
√
b} (recall that on Y ‖y′‖2 is an equivalent

norm).

Claim 3. 0 6 inf
E
V .

Recall that from Sobolev’s inequality, for any y ∈ E we have

‖y‖2
∞ 6 b

12
‖y′‖2

2 =
b

12
12
b

= 1 ⇒ ‖y‖∞ 6 1.

Using hypothesis H(ϕ)5(v) we have ϕ(t, y(t)) > −6/b2 a.e. on T and so for all
y ∈ E we have

V (y) =
1
2
‖y′‖2

2 +
∫ b

0

ϕ(t, y(t)) dt > 6
b
− 6
b2
b = 0,

which proves Claim 3.

Because of Claims 1, 2, 3 we can apply Proposition 11 and obtain x ∈W 1,2
per(T,

� N )
such that 0 ∈ ∂V (x) and V (x) > 0. Evidently x is nonconstant because for ξ ∈ � N ,

V (ξ) < 0 (hypothesis H(ϕ)5(v)). As before we can show that x ∈ C1(T,
� N ) and

that it solves (9). �

Remark. This theorem is a partial extension of [12, Theorem 3].

Let h ∈ L1(T ), h > 0 with ‖h‖1 > b and c(t) = h(t)− 1− 6/b2 + ln 2/b2. Then it
is easy to check that the function

ϕ(t, x) =




− 6
b2

+
1
b2
‖x‖ ln(‖x‖+ 1) if x 6 1,

−h(t)‖x‖η + ‖x‖+ c(t) if x > 1,
2 < η <∞,

satisfies hypotheses H(ϕ)5.
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