Previous |  Up |  Next

Article

Keywords:
totally real submanifold; quaternion space form
Summary:
In this paper, we prove a theorem for $n$-dimensional totally real minimal submanifold immersed in quaternion space form.
References:
[1] M. Bektaş and M. Ergüt: Compact space-like submanifolds with parallel mean curvature vector of a Pseudo-Riemannian space. Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 38 (1999), 17–24. MR 1767186
[2] B. Y. Chen and K. Ogiue: On totally real submanifolds. Trans. Amer. Math. Soc. 193 (1974), 257–266. DOI 10.1090/S0002-9947-1974-0346708-7 | MR 0346708
[3] B. Y. Chen and C. S. Houh: Totally real submanifolds of a quaternion projective space. Ann. Math. Pura Appl. 120 (1979), 185–199. DOI 10.1007/BF02411943 | MR 0551066
[4] Y. B. Shen: Totally real minimal submanifolds in a quaternion projective space. Chinese Ann. Math. Ser.B 14 (1993), 297–306. MR 1264303 | Zbl 0811.53061
[5] S. S. Chern, M. Carmo and S. Kobayashi: Minimal submanifolds of a sphere with second fundamental form of constant length, functional analysis and related fields. Proc. Conf. for M. Stone, Univ. Chicago, 1968. Vol III, Springer-Verlag, New York, 1970, pp. 59–75. MR 0273546
[6] H. Sun: Totally real pseudo-umbilical submanifolds of a quaternion space form. Glasgow Math. J. 40 (1998), 109–115. DOI 10.1017/S0017089500032390 | MR 1612102 | Zbl 0907.53038
[7] L. Ximin: Totally real submanifolds in a complex projective space. Internat. J. Math. Math. Sci. 22 (1999), 205–208. DOI 10.1155/S0161171299222053 | MR 1684368 | Zbl 0916.53027
[8] L. Ximin: Totally real submanifolds in $HP^{m}(1)$ with isotropic second fundamental form. Saitama Math. J. 16 (1998), 23–29. MR 1702177
[9] L. Ximin: Totally real minimal submanifolds in a quaternion projective space. Proc. Japan. Acad. Ser. A-Math. Sci. 72 (1996), 238–239. DOI 10.3792/pjaa.72.238 | MR 1435727 | Zbl 0877.53043
Partner of
EuDML logo