Previous |  Up |  Next

Article

Keywords:
sequential convergence; convergence ring; completion of a convergence ring
Summary:
We define various ring sequential convergences on $\mathbb{Z}$ and $\mathbb{Q}$. We describe their properties and properties of their convergence completions. In particular, we define a convergence $\mathbb{L}_1$ on $\mathbb{Z}$ by means of a nonprincipal ultrafilter on the positive prime numbers such that the underlying set of the completion is the ultraproduct of the prime finite fields $\mathbb{Z}/(p)$. Further, we show that $(\mathbb{Z}, \mathbb{L}^\ast _1)$ is sequentially precompact but fails to be strongly sequentially precompact; this solves a problem posed by D. Dikranjan.
References:
[1] V. I.  Arnautov, S. T.  Glavatsky and A. V.  Mikhalev: Introduction to the Theory of Topological Rings and Modules. Marcel Dekker, New York, 1996. MR 1368852
[2] J.  Borsík and R. Frič: Pointwise convergence fails to be strict. Czechoslovak Math.  J. 48(123) (1998), 313–320. DOI 10.1023/A:1022841621251 | MR 1624327
[3] C.  Chang and H. J.  Keisler: Model Theory, Third Edition. North-Holland, Amsterdam, 1990. MR 1059055
[4] D.  Dikranjan: Convergence groups: sequential compactness and generalizations. In: Eleventh International Conference on Topology, Trieste 1993. Rend. Istit. Mat. Univ. Trieste 25 (1993), 141–173. MR 1346320
[5] R.  Frič: Rational with exotic convergences. Math. Slovaca 39 (1989), 141–147. MR 1018255
[6] R.  Frič: On ring convergences. Riv. Mat. Pura Appl. 11 (1992), 125–138. MR 1183444
[7] R.  Frič: Convergence and numbers. Topology Appl. 70 (1996), 139–146. DOI 10.1016/0166-8641(95)00091-7 | MR 1397072
[8] R.  Frič and J.  Gerlits: On the sequential order. Math. Slovaca 42 (1992), 505–512. MR 1195044
[9] R.  Frič and V.  Koutník: Completions for subcategories of convergence rings. In: Categorical Topology and its Relations to Modern Analysis, Algebra and Combinatorics World Scientific Publishing Co., Singapore, 1989, pp. 195–207. MR 1047901
[10] R.  Frič and V.  Koutník: Sequential convergence spaces: iteration, extension, completion, enlargement. In: Recent Progress in General Topology, M. Hušek (ed.), Elsevier, Amsterdam, 1992, pp. 201–213. MR 1229126
[11] R.  Frič and F.  Zanolin: Coarse sequential convergence in groups, etc. Czechoslovak Math.  J. 40 (115) (1990), 459–467. MR 1065025
[12] R.  Frič and F.  Zanolin: Strict completions of $L^\ast _0$-groups. Czechoslovak Math.  J. 42 (117) (1992), 589–598. MR 1182190
[13] C.  Jensen and H.  Lenzing: Model Theoretic Algebra with Particular Emphasis on Fields, Rings, Modules. Gordon and Breach Science Publishers, 1989. MR 1057608
[14] K.  Kuratowski: Topology, Vol. I. Academic Press, New York, 1966. MR 0217751 | Zbl 0158.40901
[15] J.  Novák: On convergence groups. Czechoslovak Math.  J. 20 (95) (1970), 357–374. MR 0263973
[16] N.  Shell: Topological Fields and Near Valuations. Marcel Dekker, New York, 1990. MR 1075419 | Zbl 0702.12003
[17] P.  Simon and F.  Zanolin: A coarse convergence group need not be precompact. Czechoslovak Math.  J. 37 (112) (1987), 480–486. MR 0904772
[18] G.  Tallini: Campi di Galois non standard. In: Conferenze del Seminario di Matematica dell’Universita di Bari 209 (1986), 1–17. MR 0853611
[19] W.  Wiesław: Topological Fields. Marcel Dekker, New York, 1988. MR 0957508
Partner of
EuDML logo