[2] V. Anandam and M. Damlakhi:
Harmonic singularity at infinity in $R^n$. Real Anal. Exchange 23 (1997/8), 471–476.
MR 1639952
[3] T. S. Angell, R. E. Kleinman and J. Král:
Layer potentials on boundaries with corners and edges. Čas. pěst. mat. 113 (1988), 387–402.
MR 0981880
[4] Yu. D. Burago and V. G. Maz’ya: Potential theory and function theory for irregular regions. Zapiski Naučnyh Seminarov LOMI 3 (1967), 1–152 (In Russian).
[5] L. E. Fraenkel:
Introduction to Maximum Principles and Symmetry in Elliptic Problems. Cambridge Tracts in Mathematics 128. Cambridge University Press, 2000.
MR 1751289
[6] N. V. Grachev and V. G. Maz’ya:
On the Fredholm radius for operators of the double layer potential type on piecewise smooth boundaries. Vest. Leningrad. Univ. 19 (1986), 60–64.
MR 0880678
[7] N. V. Grachev and V. G. Maz’ya: Invertibility of boundary integral operators of elasticity on surfaces with conic points. Report LiTH-MAT-R-91-50, Linköping Univ., Sweden, .
[8] N. V. Grachev and V. G. Maz’ya: Solvability of a boundary integral equation on a polyhedron. Report LiTH-MAT-R-91-50, Linköping Univ., Sweden, .
[9] N. V. Grachev and V. G. Maz’ya: Estimates for kernels of the inverse operators of the integral equations of elasticity on surfaces with conic points. Report LiTH-MAT-R-91-06, Linköping Univ., Sweden, .
[10] L. L. Helms:
Introduction to Potential Theory. Pure and Applied Mathematics 22. John Wiley & Sons, 1969.
MR 0261018
[11] J. Král:
Integral Operators in Potential Theory. Lecture Notes in Mathematics 823. Springer-Verlag, Berlin, 1980.
MR 0590244
[13] J. Král and W. L. Wendland:
Some examples concerning applicability of the Fredholm-Radon method in potential theory. Aplikace matematiky 31 (1986), 293–308.
MR 0854323
[14] N. L. Landkof:
Fundamentals of Modern Potential Theory. Izdat. Nauka, Moscow, 1966. (Russian)
MR 0214795
[15] D. Medková:
The third boundary value problem in potential theory for domains with a piecewise smooth boundary. Czechoslovak Math. J. 47(122) (1997), 651–679.
DOI 10.1023/A:1022818618177 |
MR 1479311
[18] D. Medková:
Continuous extendibility of solutions of the Neumann problem for the Laplace equation. Czechoslovak Math. J 53(128) (2003), 377–395.
DOI 10.1023/A:1026239404667 |
MR 1983459
[19] J. Nečas:
Les méthodes directes en théorie des équations élliptiques. Academia, Prague, 1967.
MR 0227584
[20] I. Netuka:
Fredholm radius of a potential theoretic operator for convex sets. Čas. pěst. mat. 100 (1975), 374–383.
MR 0419794 |
Zbl 0314.31006
[21] I. Netuka:
Generalized Robin problem in potential theory. Czechoslovak Math. J. 22(97) (1972), 312–324.
MR 0294673 |
Zbl 0241.31008
[22] I. Netuka:
An operator connected with the third boundary value problem in potential theory. Czechoslovak Math. J. 22(97) (1972), 462–489.
MR 0316733 |
Zbl 0241.31009
[23] I. Netuka:
The third boundary value problem in potential theory. Czechoslovak Math. J. 22(97) (1972), 554–580.
MR 0313528 |
Zbl 0242.31007
[24] I. Netuka:
Continuity and maximum principle for potentials of signed measures. Czechoslovak Math. J. 25(100) (1975), 309–316.
MR 0382690 |
Zbl 0309.31019
[25] A. Rathsfeld:
The invertibility of the double layer potential in the space of continuous functions defined on a polyhedron. The panel method. Appl. Anal. 45 (1992), 1–4, 135–177.
DOI 10.1080/00036819208840093 |
MR 1293594
[27] G. E. Shilov:
Mathematical analysis. Second special course. Nauka, Moskva, 1965. (Russian)
MR 0219869
[28] Ch. G. Simader and H. Sohr:
The Dirichlet Problem for the Laplacian in Bounded and Unbounded Domains. Pitman Research Notes in Mathematics Series 360, Addison Wesley Longman Inc., 1996.
MR 1454361
[29] M. Schechter:
Principles of Functional Analysis. Academic press, New York-London, 1973.
MR 0467221