[1] E. Boeckx:
Foliated semi-symmetric spaces. Doctoral thesis, Katholieke Universiteit, Leuven, 1995.
Zbl 0846.53031
[2] E. Boeckx, O. Kowalski and L. Vanhecke:
Riemannian Manifolds of Conullity Two. World Sc., Singapore, 1996.
MR 1462887
[3] É. Cartan:
Leçons sur la géométrie des espaces de Riemann. 2nd editon. Gautier-Villars, Paris, 1946.
MR 0020842
[6] O. Kowalski:
An explicit classification of 3-dimensional Riemannian spaces satisfying $R(X,Y)\cdot R=0$. Czechoslovak Math. J. 46(121) (1996), 427–474.
MR 1408298 |
Zbl 0879.53014
[7] O. Kowalski and S. Ž. Nikčević:
Contact homogeneity and envelopes of Riemannian metrics. Beitr. Algebra Geom. 39 (1998), 155–167.
MR 1614436
[8] Ü. Lumiste:
Decomposition and classification theorems for semi-symmetric immersions. Eesti TA Toim. Füüs. Mat. Proc. Acad. Sci. Estonia Phys. Math. 36 (1987), 414–417.
MR 0925980
[9] Ü. Lumiste:
Semi-symmetric submanifolds with maximal first normal space. Eesti TA Toim. Füüs. Mat. Proc. Acad. Sci. Estonia Phys. Math. 38 (1989), 453–457.
MR 1046557
[10] Ü. Lumiste:
Semi-symmetric submanifold as the second order envelope of symmetric submanifolds. Eesti TA Toim. Füüs. Mat. Proc. Acad. Sci. Estonia Phys. Math. 39 (1990), 1–8.
MR 1059755
[11] Ü. Lumiste:
Classification of three-dimensional semi-symmetric submanifolds in Euclidean spaces. Tartu Ül. Toimetised 899 (1990), 29–44.
MR 1082921 |
Zbl 0749.53012
[12] Ü. Lumiste:
Semi-symmetric envelopes of some symmetric cylindrical submanifolds. Eesti TA Toim. Füüs. Mat. Proc. Acad. Sci. Estonia Phys. Math. 40 (1991), 245–257.
MR 1163442
[13] Ü. Lumiste:
Second order envelopes of symmetric Segre submanifolds. Tartu Ül. Toimetised. 930 (1991), 15–26.
MR 1151820
[14] Ü. Lumiste:
Isometric semiparallel immersions of two-dimensional Riemannian manifolds into pseudo-Euclidean spaces. New Developments in Differential Geometry, Budapest 1996, J. Szenthe (ed.), Kluwer Ac. Publ., Dordrecht, 1999, pp. 243–264.
MR 1670514 |
Zbl 0947.53032
[15] Ü. Lumiste:
Submanifolds with parallel fundamental form. In: Handbook of Differential Geometry, Vol. I, F. Dillen, L. Verstraelen (eds.), Elsevier Sc. B. V., Amsterdam, 2000, pp. 779–864.
MR 1736858 |
Zbl 0964.53002
[16] Ü. Lumiste and K. Riives:
Three-dimensional semi-symmetric submanifolds with axial, planar or spatial points in Euclidean spaces. Tartu Ülik. Toim. Acta et Comm. Univ. Tartuensis 899 (1990), 13–28.
MR 1082920
[17] V. Mirzoyan:
$s$-semi-parallel submanifolds in spaces of constant curvature as the envelopes of $s$-parallel submanifolds. J. Contemp. Math. Analysis (Armenian Ac. Sci., Allerton Press, Inc.) 31 (1996), 37–48.
MR 1693824 |
Zbl 0890.53027
[18] V. Mirzoyan:
On generalizations of Ü. Lumiste theorem on semi-parallel submanifolds. J. Contemp. Math. Analysis (Armenian Ac. Sci., Allerton Press, Inc.) 33 (1998), 48–58.
MR 1714535
[20] K. Sekigawa:
On some hypersurfaces satisfying $R(X,Y)\cdot R=0$. Tensor 25 (1972), 133–136.
MR 0331288
[21] P. A. Shirokov:
Selected Works on Geometry. Izd. Kazanskogo Univ., Kazan, 1966. (Russian)
MR 0221390
[22] N. S. Sinjukov: On geodesic maps of Riemannian spaces. Trudy III Vsesojuzn. Matem. S’ezda (Proc. III All-Union Math. Congr.), I, Izd. AN SSSR, Moskva, 1956, pp. 167–168. (Russian)
[23] N. S. Sinjukov:
Geodesic maps of Riemannian spaces. Publ. House “Nauka”, Moskva, 1979. (Russian)
MR 0552022
[24] W. Strübing:
Symmetric submanifolds of Riemannian manifolds. Math. Ann. 245 (1979), 37–44.
DOI 10.1007/BF01420428
[25] Z. I. Szabó:
Structure theorems on Riemannian spaces satisfying $R(X,Y)\cdot R=0$, I. The local version. J. Differential Geom. 17 (1982), 531–582.
DOI 10.4310/jdg/1214437486 |
MR 0683165
[27] M. Takeuchi:
Parallel submanifolds of space forms. Manifolds and Lie Groups. Papers in Honour of Y. Matsushima, Birkhäuser, Basel, 1981, pp. 429–447.
MR 0642871 |
Zbl 0481.53047
[28] J. Vilms:
Submanifolds of Euclidean space with parallel second fundamental form. Proc. Amer. Math. Soc. 32 (1972), 263–267.
MR 0290298 |
Zbl 0229.53045