Article
Keywords:
quasilinear elliptic; singularity; Sobolev function
Summary:
We consider a quasilinear elliptic problem whose left-hand side is a Leray-Lions operator of $p$-Laplacian type. If $p<\gamma <N$ and the right-hand side is a Radon measure with singularity of order $\gamma $ at $x_0\in \Omega $, then any supersolution in $W_{\mathrm loc}^{1,p}(\Omega )$ has singularity of order at least $\frac{(\gamma -p)}{(p-1)}$ at $x_0$. In the proof we exploit a pointwise estimate of $\mathcal A$-superharmonic solutions, due to Kilpeläinen and Malý, which involves Wolff’s potential of Radon’s measure.
References:
[2] M. Giaquinta:
Multiple Integrals in the Calculus of Variations and Elliptic Systems. Princeton University Press, Princeton, New Jersey, 1983.
MR 0717034
[4] J. Heinonen, T. Kilpeläinen and O. Martio:
Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford University Press, Oxford, 1993.
MR 1207810
[6] T. Kilpeläinen and J. Malý:
Degenerate elliptic equations with measure data and nonlinear potentials. Ann. Scuola Norm. Sup. Pisa 19 (1992), 591–613.
MR 1205885
[7] L. Korkut, M. Pašić and D. Žubrinić:
Control of essential infimum and supremum of solutions of quasilinear elliptic equations. C. R. Acad. Sci. Paris t. 329, Série I (1999), 269–274.
DOI 10.1016/S0764-4442(00)88565-1 |
MR 1713330
[8] L. Korkut, M. Pašić and D. Žubrinić:
Some qualitative properties of solutions of quasilinear elliptic equations and applications. J. Differential Equations 170 (2001), 247–280.
DOI 10.1006/jdeq.2000.3821 |
MR 1815184
[9] J. Leray and J.-L. Lions:
Quelques résultats de Visik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder. Bull. Soc. Math. France 93 (1965), 97–107.
DOI 10.24033/bsmf.1617 |
MR 0194733
[10] L. Mou:
Removability of singular sets of harmonic maps. Arch. Rational Mech. Anal. 127 (1994), 199–217.
MR 1288601 |
Zbl 1026.58017
[11] L. Simon:
Singularities of Geometric Variational Problems. IAS/Park City Math. Ser. Vol. 2. 1992, pp. 183–219.
MR 1369589