Article
Keywords:
Cantor-Bernstein theorem; MV-algebra; boolean element of an MV-algebra; partition of unity; direct product decomposition; $\sigma $-complete MV-algebra
Summary:
The Cantor-Bernstein theorem was extended to $\sigma $-complete boolean algebras by Sikorski and Tarski. Chang’s MV-algebras are a nontrivial generalization of boolean algebras: they stand to the infinite-valued calculus of Łukasiewicz as boolean algebras stand to the classical two-valued calculus. In this paper we further generalize the Cantor-Bernstein theorem to $\sigma $-complete MV-algebras, and compare it to a related result proved by Jakubík for certain complete MV-algebras.
References:
[1] R. Cignoli and D. Mundici:
An invitation to Chang’s MV-algebras. In: Advances in Algebra and Model Theory, M. Droste, R. Göbel (eds.), Gordon and Breach Publishing Group, Reading, UK, 1997, pp. 171–197.
MR 1683528
[2] R. Cignoli, I. M. L. D’Ottaviano and D. Mundici:
Algebraic Foundations of Many-valued Reasoning. Trends in Logic. Vol. 7. Kluwer Academic Publishers, Dordrecht, 1999.
MR 1786097
[6] A. Levy:
Basic Set Theory. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1979.
MR 0533962
[8] R. Sikorski:
Boolean Algebras. Springer-Verlag. Ergebnisse Math. Grenzgeb., Berlin, 1960.
MR 0126393 |
Zbl 0087.02503