Previous |  Up |  Next

Article

Keywords:
tournament; variety; projective algebra
Summary:
We investigate tournaments that are projective in the variety that they generate, and free algebras over partial tournaments in that variety. We prove that the variety determined by three-variable equations of tournaments is not locally finite. We also construct infinitely many finite, pairwise incomparable simple tournaments.
References:
[1] R.  Freese, J. Ježek and J. B. Nation: Free Lattices. Mathematical Surveys and Monographs. Vol.  42. Amer. Math. Soc., Providence, 1995. MR 1319815
[2] E.  Fried: Tournaments and non-associative lattices. Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 13 (1970), 151–164. MR 0321837
[3] E. Fried: Non-finitely based varieties of weakly associative lattices. Algebra Universalis (to appear).
[4] J.  Ježek, P.  Marković, M.  Maróti and R.  McKenzie: Equations of tournaments are not finitely based. Discrete Math. 211 (2000), 243–248. DOI 10.1016/S0012-365X(99)00155-7 | MR 1735338
[5] J.  Ježek, P.  Marković, M.  Maróti and R.  McKenzie: The variety generated by tournaments. Acta Univ. Carolinae 40 (1999), 21–41. MR 1728276
[6] J.  Ježek, R.  McKenzie: The variety generated by equivalence algebras. Algebra Universalis 45 (2001), 211–220. DOI 10.1007/s00012-001-8162-z | MR 1810549
[7] B.  Jónsson: Algebras whose congruence lattices are distributive. Math. Scand. 21 (1967), 110–121. DOI 10.7146/math.scand.a-10850 | MR 0237402
[8] R.  McKenzie, G.  McNulty and W.  Taylor: Algebras, Lattices, Varieties, Vol. I. Wadsworth & Brooks/Cole, Monterey, CA, 1987. MR 0883644
[9] V.  Müller, J.  Nešetřil and J.  Pelant: Either tournaments or algebras? Discrete Math. 11 (1975), 37–66. DOI 10.1016/0012-365X(75)90104-1 | MR 0357207
Partner of
EuDML logo