Article
Keywords:
inductive limits; regularity; sequential retractivities
Summary:
In this paper we prove the following result: an inductive limit $(E,t) = \text{ind}(E_n,t_n)$ is regular if and only if for each Mackey null sequence $(x_k)$ in $(E,t)$ there exists $n=n(x_k)\in \mathbb N$ such that $(x_k)$ is contained and bounded in $(E_n,t_n)$. From this we obtain a number of equivalent descriptions of regularity.
References:
[1] K. D. Bierstedt:
An introduction to locally convex inductive limit. In: Functional Analysis and its Applications, Singapore-New Jersey-Hong Kong, 1988, pp. 35–133.
MR 0979516
[2] K. Floret:
Folgenretraktive Sequenzen lokalkonvexer Räume. J. Reine Angew. Math. 259 (1973), 65–85.
MR 0313748 |
Zbl 0251.46003
[4] J. Bonet and P. Perez Carreras:
Barrelled locally convex spaces. North-Holland Math. Stud. 131, Amsterdam, 1987.
MR 0880207