[3] T. Fofanova, I. Rival, A. Rutkowski:
Dimension two, fixed points nad dismantable ordered sets. Order 13 (1996), 245–253.
MR 1420398
[4] F. Hausdorff: Grundzüge der Mengenlehre. Leipzig, 1914.
[5] T. Hiraguchi:
On the dimension of partially ordered sets. Sci. Rep. Kanazawa Univ. 1 (1951), 77–94.
MR 0070681 |
Zbl 0200.00013
[6] H. A. Kierstead, E. C. Milner:
The dimension of the finite subsets of $K$. Order 13 (1996), 227–231.
MR 1420396
[7] D. Kurepa:
Partitive sets and ordered chains. Rad Jugosl. Akad. Znan. Umjet. Odjel Mat. Fiz. Tehn. Nauke 6 (302) (1957), 197–235.
MR 0097328 |
Zbl 0147.26301
[9] E. Mendelson: Appendix. W. Sierpiński: Cardinal and Ordinal Numbers, Warszawa, 1958.
[11] V. Novák:
On the well dimension of ordered sets. Czechoslovak Math. J. 19 (94) (1969), 1–16.
MR 0241325
[12] V. Novák:
Über Erweiterungen geordneter Mengen. Arch. Math. (Brno) 9 (1973), 141–146.
MR 0354456
[14] M. Novotný: O representaci částečně uspořádaných množin posloupnostmi nul a jedniček (On representation of partially ordered sets by means of sequences of 0’s and 1’s). Čas. pěst. mat. 78 (1953), 61–64.
[15] M. Novotný:
Bemerkung über die Darstellung teilweise geordneter Mengen. Spisy přír. fak. MU Brno 369 (1955), 451–458.
MR 0082958
[16]
Ordered sets. Proc. NATO Adv. Study Inst. Banff (1981).
Zbl 0519.05017
[18] A. Rutkowski:
Which countable ordered sets have a dense linear extension?. Math. Slovaca 46 (1996), 445–455.
MR 1451035 |
Zbl 0890.06003
[20] J. Schmidt:
Zur Kennzeichnung der Dedekind-Mac Neilleschen Hülle einer geordneten Menge. Arch. Math. 7 (1956), 241–249.
DOI 10.1007/BF01900297 |
MR 0084484
[21] V. Sedmak:
Dimenzija djelomično uredenih skupova pridruženih poligonima i poliedrima (Dimension of partially ordered sets connected with polygons and polyhedra). Period. Math.-Phys. Astron. 7 (1952), 169–182.
MR 0053495
[22] W. Sierpiński:
Cardinal and Ordinal Numbers. Warszawa, 1958.
MR 0095787
[24] G. Szász:
Einführung in die Verbandstheorie. Leipzig, 1962.
MR 0138567