Article
Keywords:
quasi-corational module; copolyform module; $\alpha $-coatomic module
Summary:
The aim of this paper is to investigate quasi-corational, comonoform, copolyform and $\alpha $-(co)atomic modules. It is proved that for an ordinal $\alpha $ a right $R$-module $M$ is $\alpha $-atomic if and only if it is $\alpha $-coatomic. And it is also shown that an $\alpha $-atomic module $M$ is quasi-projective if and only if $M$ is quasi-corationally complete. Some other results are developed.
References:
[1] T. Albu and P. F. Smith:
Dual relative Krull dimension of modules over commutative rings. Abelian groups. Math. Appl. (East European Ser.) 343 (1995), 1–15.
MR 1378184
[2] F. W. Anderson and K. R. Fuller: Rings and Categories. Springer-Verlag, New York, 1973.
[6] S. H. Mohammed and B. J. Muller:
Continuous and Discrete Modules. London Math. Soc. Lecture Notes 147, Cambridge Univ. Press, 1990.
MR 1084376
[7] K. Oshiro:
Semiperfect modules and quasi-semiperfect modules. Osaka J. Math. 20 (1983), 337–372.
MR 0706241 |
Zbl 0516.16015
[9] H. H. Storrer:
ARRAY(0x9afdfe8). Lecture Notes in Math. vol. 246, Springer-Verlag, New York, 1992, pp. 617–661.
MR 0360717