Article
Keywords:
Hopf algebra; $2$-cocycle; braided Hopf algebra
Summary:
In this paper, we study the $H^{\sigma-R}$ type Hopf algebras and present its braided and quasitriangular Hopf algebra structure. This generalizes well-known results on $H^{\sigma }$ and $H^R$ type Hopf algebras. Finally, the classification of $H^{\sigma -R}$ type Hopf algebras is given.
References:
[1] Doi Y.:
Braided bialgebras and quadratic bialgebras. Comm. Algebra 21 (5) (1993), 1731-1749.
MR 1213985 |
Zbl 0779.16015
[2] Doi Y., Takeuchi M.:
Multiplication alteration by two-cocycles-The quantum version. Comm. Algebra 22 (14) (1994), 5715-5732.
MR 1298746 |
Zbl 0821.16038
[3] Sweelder M.E.:
Hopf Algebras. W.A. Benjamin, New York, 1969.
MR 0252485
[4] Majid S.:
Quasitriangular Hopf Algebras and Yang-Baxter equations. Int. J. Modern Phys. A5 (1990), 1-91.
MR 1027945 |
Zbl 0709.17009
[5] Montgomery S.:
Hopf Algebras and Their Actions on Rings. CBMS 82, Amer. Math. Soc., 1993.
MR 1243637 |
Zbl 0793.16029
[6] Radford D.E.:
On the Quasitriangular structure of a semisimple Hopf Algebras. J. Algebra 141 (2) (1991), 354-358.
MR 1125700
[7] I-Peng Lin B.:
Crossed coproducts of Hopf algebras. Comm. Algebra 10 (1) (1982), 1-17.
MR 0674686
[8] Reshetikhin N.Y.:
Multiparameter quantum groups and twisted quasi-triangular Hopf algebras. Lett. Math. Phys. 20 (1990), 331-335.
MR 1077966