Previous |  Up |  Next

Article

Keywords:
elliptic equations; Morrey spaces
Summary:
In this note the well-posedness of the Dirichlet problem (1.2) below is proved in the class $H^{1,p}_0(\Omega)$ for all $1<p<\infty$ and, as a consequence, the Hölder regularity of the solution $u$. $\Cal L$ is an elliptic second order operator with discontinuous coefficients $(VMO)$ and the lower order terms belong to suitable Lebesgue spaces.
References:
[1] Agmon S.: Lectures on Elliptic boundary Value Problems. Van Nostrand, N.J., 1965. MR 0178246 | Zbl 0142.37401
[2] Browder F.E.: Strongly elliptic systems of differential equations. in: Contributions to the Theory of Partial Differential Equations, Princeton University Press, Princeton N.J., 1954, pp.15-51. MR 0067306 | Zbl 0057.32901
[3] Bers L., Schechter M.: Elliptic Equations In Partial Differential Equations. Interscience, New York, 1964, pp.131-299. MR 0165224
[4] Chiarenza F., Frasca M., Longo P.: Interior $W^{2,p}$ estimates for non-divergence elliptic equations with discontinuous coefficients. Ricerche Mat. 40 (1991), 149-168. MR 1191890
[5] Chiarenza F., Frasca M., Longo P.: $W^{2,p}$-solvability of the Dirichlet problem for nondivergence elliptic equations with $VMO$ coefficients. Trans. Amer. Math. Soc. 336 (1993), 841-853. MR 1088476
[6] Coifman R., Rochberg R., Weiss G.: Factorization theorems for Hardy spaces in several variables. Ann. of Math. 103 (1976), 611-635. MR 0412721 | Zbl 0326.32011
[7] De Giorgi E.: Sulla differenziabilita' e l'analiticita' delle estremali degli integrali multipli regolari. Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. 3 (1957), 25-43. MR 0093649 | Zbl 0084.31901
[8] Di Fazio G.: $L^p$ Estimates for divergence form elliptic equations with discontinuous coefficients. Boll. U.M.I. (7) 10-A (1996), 409-420. MR 1405255
[9] Friedman A.: Partial Differential Equations. Holt, Rinehart and Winston, New York, 1969. MR 0445088 | Zbl 1121.46001
[10] Friedrichs K.O.: The identity of weak and strong extensions of differential operators. Trans. Amer. Math. Soc. 55 (1944), 132-151. MR 0009701 | Zbl 0061.26201
[11] Friedrichs K.O.: On the differentiability of the solutions of linear elliptic equations. Comm. Pure Appl. Math. 6 (1953), 299-326. MR 0058828
[12] Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order. 2nd ed., Springer-Verlag, 1983. MR 0737190 | Zbl 1042.35002
[13] Garding L.: Dirichlet's problem for linear elliptic partial differential equations. Math. Scand. 1 (1953), 55-72. MR 0064979 | Zbl 0053.39101
[14] John F., Nirenberg L.: On functions of bounded mean oscillation. Comm. Pure Appl. Math. 14 (1961), 415-426. MR 0131498 | Zbl 0102.04302
[15] Ladyzenskaya O.A., Uraltśeva N.N.: Linear and Quasilinear Elliptic Equations. English Translation: Academic Press, New York, 2nd Russian ed., 1973.
[16] Lax P.D.: On Cauchy's problem for hyperbolic equations and the differentiability of solutions of elliptic equations. Comm. Pure Appl. Math. 8 (1955), 615-633. MR 0078558 | Zbl 0067.07502
[17] Miranda C.: Partial Differential Equations of Elliptic Type. second revised edition, Springer Verlag, 1970. MR 0284700 | Zbl 0198.14101
[18] Miranda C.: Sulle equazioni ellittiche del secondo ordine di tipo non variazionale, a coefficienti discontinui. Annali di Matematica 63 (1963), 353-386. MR 0170090 | Zbl 0156.34001
[19] Miranda C.: Alcune osservazioni sulla maggiorazione in $L^{\nu}$ delle soluzioni deboli delle equazioni ellittiche del secondo ordine. Annali di Matematica 61 (1963), 151-170. MR 0177187
[20] Neri U.: Some properties of bounded mean oscillation. Studia Math. 41 (1977), 63-75. MR 0445210
[21] Nirenberg L.: On nonlinear elliptic partial differential equations and Hölder continuity. Comm. Pure Appl. Math. 6 (1953), 103-156. MR 0064986 | Zbl 0050.09801
[22] Nirenberg L.: Remarks on strongly elliptic partial differential equations. Comm. Pure Appl. Math. 5 (1955), 649-675. MR 0075415 | Zbl 0067.07602
[23] Sarason D.: On functions of vanishing mean oscillation. Trans. Amer. Math. Soc. 207 (1975), 391-405. MR 0377518
[24] Stampacchia G.: Contributi alla regolarizzazione delle soluzioni dei problemi al contorno per equazioni del secondo ordine ellittiche. Ann. Scuola Norm. Sup. Pisa (3) 12 (1958), 223-245. MR 0125313 | Zbl 0082.09701
[25] Spampacchia G.: I problemi al contorno per le equazioni differentiali di tipo ellittico. Atti VI Congr. Un. Mat. Ital., Napoli Edizioni Cremonese, 1960, pp.21-44. MR 0123807
[26] Stampacchia G.: Le probléme de Dirichlet pour les équations elliptiques du second ordre á coefficients discontinuous. Ann. Inst. Fourier 15 (1965), 189-258. MR 0192177
[27] Stampacchia G.: Equations elliptiques du second ordre á coefficients discontinues. Séminaire de Mathématiques Supérieures 16, Les Presses de l'Université de Montréal, 1966. MR 0251373
[28] Trudinger N.S.: Linear elliptic operators with measurable coefficients. Ann. Scuola Norm. Sup. Pisa (3) 27 (1973), 265-308. MR 0369884 | Zbl 0279.35025
Partner of
EuDML logo