Article
Keywords:
provable; recursive; complete
Summary:
The set of all indices of all functions provably recursive in any reasonable theory $T$ is shown to be recursively isomorphic to $U\times\overline{U}$, where $U$ is $\Pi_2$-complete set.
References:
[2] Hájek P., Pudlák P.:
Metamathematics of First Order Arithmetic. Springer, 1993.
MR 1219738
[3] Hay L.:
Index sets universal for differences of arithmetic sets. Zeitschr. f. math. Logik und Grundlagen d. Math. 20 (1974), 239-254.
MR 0429518 |
Zbl 0311.02052
[5] Kirby L.A.S., Paris J.B.:
Accessible independence results for Peano arithmetic. Bull. London Math. Soc. 14 285-293 (1982).
MR 0663480 |
Zbl 0501.03017
[6] Lewis F.D.:
Classes of recursive functions and their index sets. Zeitschr. f. math. Logik und Grundlagen d. Math. 17 291-294 (1971).
MR 0294130 |
Zbl 0229.02035
[8] Paris J.B., Harrington L.:
A mathematical incompleteness in Peano arithmetic. in J. Barwise, editor, Handbook of Mathematical Logic, Chapter D8., North-Holland, 1977.
MR 0457132
[9] Rogers H., Jr.:
Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York, 1967.
MR 0224462 |
Zbl 0256.02015