Title:
|
A note on differential and integral equations in locally convex spaces (English) |
Author:
|
Bugajewska, Daria |
Author:
|
Bugajewski, Dariusz |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
36 |
Issue:
|
5 |
Year:
|
2000 |
Pages:
|
415-420 |
. |
Category:
|
math |
. |
MSC:
|
34G20 |
MSC:
|
34K30 |
MSC:
|
45N05 |
MSC:
|
47N20 |
idZBL:
|
Zbl 1090.34575 |
idMR:
|
MR1822809 |
. |
Date available:
|
2008-06-06T22:26:51Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/107754 |
. |
Reference:
|
1. Astala K.: On Peano’s theorem in locally convex spaces.Studia Math., 73, 1982, 213-223. Zbl 0507.34047, MR 0675425 |
Reference:
|
2. Bugajewska D.: Topological properties of solution sets of some problems for differential equations.Ph. D. Thesis, Poznań, 1999. |
Reference:
|
3. Bugajewska D., Bugajewski D.: On topological properties of solution sets for differential equations in locally convex spaces.submitted. Zbl 1042.34555 |
Reference:
|
4. Bugajewski D.: On the Volterra integral equation in locally convex spaces.Demonstratio Math., 25, 1992, 747-754. Zbl 0781.45012, MR 1222551 |
Reference:
|
5. Bugajewski D.: On differential and integral equations in locally convex spaces.Demonstratio Math., 28, 1995, 961-966. Zbl 0855.34071, MR 1392249 |
Reference:
|
6. Bugajewski D., Szufla S.: Kneser’s theorem for weak solutions of the Darboux problem in Banach spaces.Nonlinear Analysis, 20, No 2, 1993, 169-173. MR 1200387 |
Reference:
|
7. Constantin A.: On the unicity of solution for the differential equation $x^{(n)} = f (t, x)$.Rend. Circ. Mat. Palermo, Serie II, 42, 1991, 59-64. MR 1244738 |
Reference:
|
8. Hukuhara M.: Théorems fondamentaux de la théorie des équations différentielles ordinaires dans l’espace vectorial topologique.J. Fac. Sci. Univ. Tokyo, Sec. I, 8, No 1, 1959, 111-138. MR 0108630 |
Reference:
|
9. Januszewski J., Szufla S.: On the Urysohn integral equation in locally convex spaces.Publ. Inst. Math., 51, No 65, 1992, 77-80. MR 1213650 |
Reference:
|
10. Kelley J.L., Namioka I.: Linear topological spaces.Van Nostrand, Princeton, 1963. Zbl 0115.09902, MR 0166578 |
Reference:
|
11. Krasnoselski M.A., Krein S.G.: K teorii obyknoviennych differencialnych uravnienij v banachovych prostranstvach.Trudy Semin. Funkc. Anal. Voronež. Univ., 2, 1956, 3-23. |
Reference:
|
12. Lemmert R.: On ordinary differential equations in locally convex spaces.Nonlinear Analysis, 10, No 12, 1986, 1385-1390. Zbl 0612.34056, MR 0869547 |
Reference:
|
13. Millionščikov W.: K teorii obyknoviennych differencialnych uravnienij v lokalno vypuklych prostranstvach.Dokl. Akad. Nauk SSSR, 131, 1960, 510-513. |
Reference:
|
14. Pianigiani P.: Existence of solutions of an ordinary differential equations in the case of Banach space.Bull. Ac. Polon.: Math., 8, 1976,667-673. |
Reference:
|
15. Reichert M.: Condensing Volterra operators in locally convex spaces.Analysis, 16, 1996, 347-364. Zbl 0866.47042, MR 1429459 |
Reference:
|
16. Sadovski B. N.: Limit-compact and condensing mappings.Russian Math. Surveys, 27, 1972, 81-146. MR 0428132 |
Reference:
|
17. Szufla S.: Kneser’s theorem for weak solutions of ordinary differential equations in reflexive Banach spaces.Bull. Acad. Polon.: Math., 26, 1978, 407-413. MR 0492684 |
Reference:
|
18. Szufla S.: On the Kneser-Hukuhara property for integral equations in locally convex spaces.Bull. Austral. Math. Soc., 36, 1987, 353-360. MR 0923817 |
. |