Previous |  Up |  Next

Article

Title: A note on differential and integral equations in locally convex spaces (English)
Author: Bugajewska, Daria
Author: Bugajewski, Dariusz
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 36
Issue: 5
Year: 2000
Pages: 415-420
.
Category: math
.
MSC: 34G20
MSC: 34K30
MSC: 45N05
MSC: 47N20
idZBL: Zbl 1090.34575
idMR: MR1822809
.
Date available: 2008-06-06T22:26:51Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107754
.
Reference: 1. Astala K.: On Peano’s theorem in locally convex spaces.Studia Math., 73, 1982, 213-223. Zbl 0507.34047, MR 0675425
Reference: 2. Bugajewska D.: Topological properties of solution sets of some problems for differential equations.Ph. D. Thesis, Poznań, 1999.
Reference: 3. Bugajewska D., Bugajewski D.: On topological properties of solution sets for differential equations in locally convex spaces.submitted. Zbl 1042.34555
Reference: 4. Bugajewski D.: On the Volterra integral equation in locally convex spaces.Demonstratio Math., 25, 1992, 747-754. Zbl 0781.45012, MR 1222551
Reference: 5. Bugajewski D.: On differential and integral equations in locally convex spaces.Demonstratio Math., 28, 1995, 961-966. Zbl 0855.34071, MR 1392249
Reference: 6. Bugajewski D., Szufla S.: Kneser’s theorem for weak solutions of the Darboux problem in Banach spaces.Nonlinear Analysis, 20, No 2, 1993, 169-173. MR 1200387
Reference: 7. Constantin A.: On the unicity of solution for the differential equation $x^{(n)} = f (t, x)$.Rend. Circ. Mat. Palermo, Serie II, 42, 1991, 59-64. MR 1244738
Reference: 8. Hukuhara M.: Théorems fondamentaux de la théorie des équations différentielles ordinaires dans l’espace vectorial topologique.J. Fac. Sci. Univ. Tokyo, Sec. I, 8, No 1, 1959, 111-138. MR 0108630
Reference: 9. Januszewski J., Szufla S.: On the Urysohn integral equation in locally convex spaces.Publ. Inst. Math., 51, No 65, 1992, 77-80. MR 1213650
Reference: 10. Kelley J.L., Namioka I.: Linear topological spaces.Van Nostrand, Princeton, 1963. Zbl 0115.09902, MR 0166578
Reference: 11. Krasnoselski M.A., Krein S.G.: K teorii obyknoviennych differencialnych uravnienij v banachovych prostranstvach.Trudy Semin. Funkc. Anal. Voronež. Univ., 2, 1956, 3-23.
Reference: 12. Lemmert R.: On ordinary differential equations in locally convex spaces.Nonlinear Analysis, 10, No 12, 1986, 1385-1390. Zbl 0612.34056, MR 0869547
Reference: 13. Millionščikov W.: K teorii obyknoviennych differencialnych uravnienij v lokalno vypuklych prostranstvach.Dokl. Akad. Nauk SSSR, 131, 1960, 510-513.
Reference: 14. Pianigiani P.: Existence of solutions of an ordinary differential equations in the case of Banach space.Bull. Ac. Polon.: Math., 8, 1976,667-673.
Reference: 15. Reichert M.: Condensing Volterra operators in locally convex spaces.Analysis, 16, 1996, 347-364. Zbl 0866.47042, MR 1429459
Reference: 16. Sadovski B. N.: Limit-compact and condensing mappings.Russian Math. Surveys, 27, 1972, 81-146. MR 0428132
Reference: 17. Szufla S.: Kneser’s theorem for weak solutions of ordinary differential equations in reflexive Banach spaces.Bull. Acad. Polon.: Math., 26, 1978, 407-413. MR 0492684
Reference: 18. Szufla S.: On the Kneser-Hukuhara property for integral equations in locally convex spaces.Bull. Austral. Math. Soc., 36, 1987, 353-360. MR 0923817
.

Files

Files Size Format View
ArchMathRetro_036-2000-5_7.pdf 204.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo