Previous |  Up |  Next

Article

Title: Convergence tests for one scalar differential equation with vanishing delay (English)
Author: Baštinec, Jaromír
Author: Diblík, Josef
Author: Šmarda, Zdeněk
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 36
Issue: 5
Year: 2000
Pages: 405-414
.
Category: math
.
MSC: 34K05
MSC: 34K25
idZBL: Zbl 1090.34596
idMR: MR1822808
.
Date available: 2008-06-06T22:26:48Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107753
.
Reference: 1. O. Arino I. Györi, M. Pituk: Asymptotically diagonal delay differential systems.J. Math. Anal. Appl. 204(1996), 701–728. MR 1422768
Reference: 2. O. Arino, and M. Pituk: Convergence in asymptotically autonomouos functional differential equations.J. Math. Anal. Appl. 237(1999), 376–392. MR 1708180
Reference: 3. F.V. Atkinson, and J.R. Haddock: Criteria for asymptotic constancy of solutions of functional differential equations.J. Math. Anal. Appl. 91(1983), 410–423. MR 0690880
Reference: 4. R. Bellman, and K.L. Cooke: Differential-difference Equations.Mathematics in science and engineering, A series of Monographs and Textbooks, New York, London, Academic Press, 1963. MR 0147745
Reference: 5. J. Čermák: On the asymptotic behaviour of solutions of certain functional differential equations.Math. Slovaca 48(1998), 187–212. MR 1647674
Reference: 6. J. Čermák: The asymptotic bounds of solutions of linear delay systems.J. Math. Anal. Appl. 225(1998), 373–388. MR 1644331
Reference: 7. J. Čermák: Asymptotic estimation for functional differential equations with several delays.Arch. Math. 35(1999), 337–345. MR 1744521
Reference: 8. J. Čermák: Note on canonical forms for functional differential equations.Math. Pann. 11(2000), 29–39. MR 1740739
Reference: 9. J. Diblík: A criterion for convergence of solutions of homogeneous delay linear differential equations.Ann. Polon. Math. LXXII. 2(1999), 115–130. MR 1737068
Reference: 10. J. Diblík: Asymptotic representation of solutions of equation $\dot{y}(t) = \beta(t)[y(t) − y(t − \tau (t))]$.J. Math. Anal. Appl. 217(1998), 200–215.
Reference: 11. I. Györi, M. Pituk: Comparison theorems and asymptotic equilibrium for delay differential and difference equations.Dynamic Systems and Appl. 5(1996), 277–302. MR 1396192
Reference: 12. I. Györi, M. Pituk: L^2 -perturbation of a linear delay differential equation.J. Math. Anal. Appl. 195(1995), 415–427. MR 1354552
Reference: 13. J. Hale, and S.V. Lunel: Introduction to Functional Differential Equations.Springer-Verlag, 1993. MR 1243878
Reference: 14. T. Krisztin: Asymptotic estimation for functional differential equations via Lyapunov functions.Colloquia Mathematica Societatis János Bolyai, 53, Qualitative theory of differential equations, Szeged, 1986, 1–12.
Reference: 15. T. Krisztin: On the rate of convergence of solutions of functional differential equations.Funkcial. Ekvac. 29(1986), 1–10. Zbl 0601.34046, MR 0865210
Reference: 16. T. Krisztin: A note on the convergence of the solutions of a linear functional differential equation.J. Math. Anal. Appl. 145(1990), 17–25. Zbl 0693.45012, MR 1031171
Reference: 17. K. Murakami: Asymptotic constancy for systems of delay differential equations.Nonl. Analysis, Theory, Methods and Appl. 30(1997), 4595–4606. Zbl 0959.34058, MR 1603444
Reference: 18. S.N. Zhang: Asymptotic behaviour and structure of solutions for equation $\dot{x}(t) = p(t)[x(t) − x(t − 1)]$.J. Anhui University (Natural Science Edition) 2 (1981), 11–21. [In Chinese]
.

Files

Files Size Format View
ArchMathRetro_036-2000-5_6.pdf 232.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo