Previous |  Up |  Next

Article

Title: Linear differential equations with several unbounded delays (English)
Author: Čermák, Jan
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 36
Issue: 5
Year: 2000
Pages: 421-427
.
Category: math
.
MSC: 34K05
MSC: 34K25
MSC: 39B22
idZBL: Zbl 1090.34595
idMR: MR1822810
.
Date available: 2008-06-06T22:26:53Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107755
.
Reference: 1. Čermák J.: Note on simultaneous solutions of a system of Schröder’s equations.Math. Bohemica 120, 1995, 225–236. MR 1369682
Reference: 2. Čermák J.: The asymptotic bounds of solutions of linear delay systems, J. Math. Anal. Appl. 115.1998, 373–388. MR 1644331
Reference: 3. Čermák J.: Asymptotic estimation for functional differential equations with several delays.Arch. Math. (Brno) 35, 1999, 337–345. MR 1744521
Reference: 4. Derfel G.: Functional-differential equations with compressed arguments and polynomial coefficients: Asymptotic of the solutions.J. Math. Anal. Appl. 193, 1995, 671–679. MR 1338729
Reference: 5. Diblík J.: Asymptotic equilibrium for a class of delay differential equations.Proc. of the Second International Conference on Difference equations (S. Elaydi, I. Győri, G. Ladas, eds.), 1995, 137–143. MR 1636319
Reference: 6. Iserles A.: On generalized pantograph functional-differential equation.European J. Appl. Math. 4, 1993, 1–38. MR 1208418
Reference: 7. Kato T., McLeod J. B.: The functional differential equation $y'(x) = a y(\lambda x) + b y(x).Bull. Amer. Math. Soc. 77, 1971, 891–937. MR 0283338
Reference: 8. Kuczma M., Choczewski B., Ger R.: Iterative Functional Equations.Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1990. Zbl 0703.39005, MR 1067720
Reference: 9. Lim E. B.: Asymptotic bounds of solutions of the functional differential equation $x'(t) = ax(\lambda t) + bx(t) + f (t)$, $0 < \lambda < 1$.SIAM J. Math. Anal. 9, 1978, 915–920. MR 0506772
Reference: 10. Liu Y.: Regular solutions of the Shabat equation.J. Differential Equations 154, 1999, 1–41. Zbl 0929.34054, MR 1684290
Reference: 11. Makay G., Terjéki J.: On the asymptotic behavior of the pantograph equations.E. J. Qualitative Theory of Diff. Equ 2, 1998, 1–12. MR 1615106
Reference: 12. Neuman F.: Simultaneous solutions of a system of Abel equations and differential equations with several deviations.Czechoslovak Math. J. 32 (107), 1982, 488–494. Zbl 0524.34070, MR 0669790
Reference: 13. Pandolfi L.: Some observations on the asymptotic behaviors of the solutions of the equation $x'(t) = A(t)x(\lambda t)+B(t)x(t)$, $\lambda > 0$.J. Math. Anal. Appl. 67, 1979, 483–489. MR 0528702
Reference: 14. Zdun M.: On simultaneous Abel equations.Aequationes Math. 38, 1989, 163–177. Zbl 0686.39009, MR 1018910
.

Files

Files Size Format View
ArchMathRetro_036-2000-5_8.pdf 208.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo