2. Bugajewska D.: Topological properties of solution sets of some problems for differential equations. Ph. D. Thesis, Poznań, 1999.
3. Bugajewska D., Bugajewski D.:
On topological properties of solution sets for differential equations in locally convex spaces. submitted.
Zbl 1042.34555
4. Bugajewski D.:
On the Volterra integral equation in locally convex spaces. Demonstratio Math., 25, 1992, 747-754.
MR 1222551 |
Zbl 0781.45012
5. Bugajewski D.:
On differential and integral equations in locally convex spaces. Demonstratio Math., 28, 1995, 961-966.
MR 1392249 |
Zbl 0855.34071
6. Bugajewski D., Szufla S.:
Kneser’s theorem for weak solutions of the Darboux problem in Banach spaces. Nonlinear Analysis, 20, No 2, 1993, 169-173.
MR 1200387
7. Constantin A.:
On the unicity of solution for the differential equation $x^{(n)} = f (t, x)$. Rend. Circ. Mat. Palermo, Serie II, 42, 1991, 59-64.
MR 1244738
8. Hukuhara M.:
Théorems fondamentaux de la théorie des équations différentielles ordinaires dans l’espace vectorial topologique. J. Fac. Sci. Univ. Tokyo, Sec. I, 8, No 1, 1959, 111-138.
MR 0108630
9. Januszewski J., Szufla S.:
On the Urysohn integral equation in locally convex spaces. Publ. Inst. Math., 51, No 65, 1992, 77-80.
MR 1213650
11. Krasnoselski M.A., Krein S.G.: K teorii obyknoviennych differencialnych uravnienij v banachovych prostranstvach. Trudy Semin. Funkc. Anal. Voronež. Univ., 2, 1956, 3-23.
12. Lemmert R.:
On ordinary differential equations in locally convex spaces. Nonlinear Analysis, 10, No 12, 1986, 1385-1390.
MR 0869547 |
Zbl 0612.34056
13. Millionščikov W.: K teorii obyknoviennych differencialnych uravnienij v lokalno vypuklych prostranstvach. Dokl. Akad. Nauk SSSR, 131, 1960, 510-513.
14. Pianigiani P.: Existence of solutions of an ordinary differential equations in the case of Banach space. Bull. Ac. Polon.: Math., 8, 1976,667-673.
15. Reichert M.:
Condensing Volterra operators in locally convex spaces. Analysis, 16, 1996, 347-364.
MR 1429459 |
Zbl 0866.47042
16. Sadovski B. N.:
Limit-compact and condensing mappings. Russian Math. Surveys, 27, 1972, 81-146.
MR 0428132
17. Szufla S.:
Kneser’s theorem for weak solutions of ordinary differential equations in reflexive Banach spaces. Bull. Acad. Polon.: Math., 26, 1978, 407-413.
MR 0492684
18. Szufla S.:
On the Kneser-Hukuhara property for integral equations in locally convex spaces. Bull. Austral. Math. Soc., 36, 1987, 353-360.
MR 0923817