Article
Keywords:
symplectic structure; natural lifts on tangent and cotangent bundles
Summary:
Two symplectic structures on a manifold $M$ determine a (1,1)-tensor field on $M$. In this paper we study some properties of this field. Conversely, if $A$ is (1,1)-tensor field on a symplectic manifold $(M, \omega )$ then using the natural lift theory we find conditions under which $\omega ^A, \omega ^A(X, Y)=\omega (AX, Y)$, is symplectic.
References:
[1] Doupovec, M., Kurek, J.:
Liftings of tensor fields to the cotangent bundle. Proceedings, Int. conference Diff. Geometry and Applications Brno (1996), MU Brno, 141–150.
MR 1406334
[2] Doupovec, M., Kurek, J.:
Liftings of covariant (0,2)-tensor fields to the bundle of $k$-dimensional 1-velocities. Supplements di Rendiconti del Circolo Matematico di Palermo, Serie II 43 (1996), 111–121.
MR 1463514
[3] Gancarzewicz, J., Mikulski, W., Pogoda, Z.:
Lifts of some tensor fields and connections to product preserving functors. 135 (1914), Nagoya Math. J., 1–41.
MR 1295815
[4] Libermann, P., Marle, Ch.:
Symplectic Geometry and Analytical Mechanics. (1987), D. Reider Pub. Comp., Dortrecht - Boston - Lancaster - Tokyo.
MR 0882548
[5] Yano, K., Ishihara, S.:
Tangent and cotangent bundles. M. Dekker Inc. New York, 1973.
MR 0350650